若框圖(如圖)所給的程序運(yùn)行結(jié)果為S=90,那么判斷框中應(yīng)填入的關(guān)于k的條件是
 

考點(diǎn):程序框圖
專題:算法和程序框圖
分析:算法的功能是求S=10×9×…×k的值,根據(jù)輸出的S值確定跳出循環(huán)的k值,從而可得判斷框的條件.
解答: 解:由程序框圖知:算法的功能是求S=10×9×…×k的值,
∵輸出S=90,
∴跳出循環(huán)的k值為8,
∴判斷框的條件為k≤8?
故答案為:k≤8?.
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷是否的功能及確定跳出循環(huán)的k值是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖的程序框圖,那么輸出的S=
2013
2014
,那么判斷框內(nèi)是( 。
A、k≤2013?
B、k≤2014?
C、k≥2013?
D、k≥2014?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≤x
x+ay≤4
y≥1
,若z=3x+y的最大值為16,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d.已知S2,S3+1,S4成等差數(shù)列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比數(shù)列,求
an+1
2(Sn+4)
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的六面體,面ABC∥面A1B1C1,AA1⊥面ABC,AA1=A1C1=2AB=2A1B1=2AC=2,AD⊥DC1,D為BB1的中點(diǎn).
(1)求證:AB⊥AC;
(2)求二面角B-CC1-A的余弦值;
(3)設(shè)點(diǎn)E是平面A1B1C1內(nèi)的動(dòng)點(diǎn),求ED+EC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+a,g(x)=x-a.
(Ⅰ)當(dāng)直線y=g(x)恰好為曲線y=f(x)的切線時(shí),求a的值;
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)F(x)=f(x)•g(x)在區(qū)間[e-
3
2
,1]上不單調(diào),求a的取值范圍;
(Ⅲ)若a∈Z且xf(x)+g(x)>0對(duì)一切x>1恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C對(duì)應(yīng)邊分別是a,b,c,c=2,sin2A+sin2B-sin2C=sinAsinB.
(1)若sinC+sin(B-A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在[20,80)(單位:mg/100mL)之間,屬于酒后駕車,血液酒精濃度在80mg/100mL(含80)以上時(shí),屬醉酒駕車.”某市交警在該市一交通崗前設(shè)點(diǎn)對(duì)過往的車輛進(jìn)行抽查,經(jīng)過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測(cè)試儀對(duì)這60名酒后駕車者血液中酒精濃度進(jìn)行檢測(cè)后依所得結(jié)果畫出的頻率分布直方圖
(1)若血液酒精濃度在[50,60)和[60,70)的分別有9人和6人,請(qǐng)補(bǔ)全頻率分布直方圖.圖乙的程序框圖是對(duì)這60名酒后駕車者血液的酒精濃度做進(jìn)一步的統(tǒng)計(jì),求出圖乙輸出的S的值,并說明S的統(tǒng)計(jì)意義;(圖乙中數(shù)據(jù)mi與fi分別表示圖甲中各組的組中點(diǎn)值及頻率)
(2)本次行動(dòng)中,吳、李兩位先生都被酒精測(cè)試儀測(cè)得酒精濃度屬于70~90mg/100mL的范圍,但他倆堅(jiān)稱沒喝那么多,是測(cè)試儀不準(zhǔn),交警大隊(duì)隊(duì)長(zhǎng)決定在被酒精測(cè)試儀測(cè)得酒精濃度屬于70~90mg/100mL范圍的酒后駕車者中隨機(jī)抽出2人抽血檢驗(yàn),設(shè)ξ為吳、李兩位先生被抽中的人數(shù),求ξ的分布列,并求吳、李兩位先生至少有1人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將參加夏令營的500名學(xué)生編號(hào)為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽得的號(hào)碼為003,這500名學(xué)生分住在三個(gè)營區(qū),從001到200在第一營區(qū),從201到355在第二營區(qū),從356到500在第三營區(qū),則第三個(gè)營區(qū)被抽中的人數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案