精英家教網 > 高中數學 > 題目詳情

【題目】2015年12月,華中地區(qū)數城市空氣污染指數“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數據如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關關系,求關于的線性回歸方程;(提示數據:

(2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時的濃度;(II)規(guī)定:當一天內的濃度平均值在內,空氣質量等級為優(yōu);當一天內的濃度平均值在內,空氣質量等級為良,為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量不超過多少萬輛?(結果以萬輛為單位,保留整數)參考公式:回歸直線的方程是,其中, .

【答案】(1) ;(2)() 微克/立方米;() 13萬輛.

【解析】試題分析:(1)根據公式求出,可寫出線性回歸方程;
(2)(i)根據(1)的性回歸方程,代入 求出的濃度,

ii解得x的取值范圍.

試題解析:(1)由數據可得

,(注:用另一個公式求運算量小些)

關于的線性回歸方程為. (2)()當車流量為12萬輛時,即時, .故車流量為12萬輛時, 的濃度為91微克/立方米. ()根據題意信息得 , 故要使該市某日空氣質量為優(yōu)或為良,則應控制當天車流量在13萬輛以內.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列說法中,正確的個數是( )

①函數的零點有2個;

②函數的最小正周期是;

③命題“函數處有極值,則”的否命題是真命題;

.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某公司生產某款手機的年固定成本為40萬元,每生產1萬只還需另投入16萬元.設該公司一年內共生產該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關于年產量(萬只)的函數解析式;

(2)當年產量為多少萬只時,該公司在該款手機的生產中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求證:a,b,c成等比數列;
(2)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數y=3sin(2x+ ),
(1)求振幅、初相和最小正周期;
(2)簡述此函數圖象是怎樣由函數y=sinx的圖象作變換得到的.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過的動圓恒與軸相切,設切點為是該圓的直徑.

(Ⅰ)求點軌跡的方程;

(Ⅱ)當不在y軸上時,設直線與曲線交于另一點,該曲線在處的切線與直線交于點.求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,設關于的方程個不同的實數解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某地人群年齡與高血壓的關系,用簡單隨機抽樣方法從該地區(qū)年齡在20~60歲的人群中抽取200人測量血壓,結果如下:

高血壓

非高血壓

總計

年齡20到39歲

12

100

年齡40到60歲

52

100

總計

60

200

(1)計算表中的、、值;是否有99%的把握認為高血壓與年齡有關?并說明理由.

(2)現從這60名高血壓患者中按年齡采用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人,求恰好一名患者年齡在20到39歲的概率.

附參考公式及參考數據: =

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論正確的是

在某項測量中,測量結果服從正態(tài)分布.若內取值的概率為0.35,則內取值的概率為0.7;

以模型去擬合一組數據時,為了求出回歸方程,設,其變換后得到線性回歸方程,則;

已知命題若函數上是增函數,則的逆否命題是,則函數上是減函數是真命題;

設常數,則不等式恒成立的充要條件是.

查看答案和解析>>

同步練習冊答案