設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時(shí),關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

解:(1)f(x)的定義域?yàn)椋?,+∞),所以f′(x)=-a=. …(2分)
因?yàn)楫?dāng)x=1時(shí),函數(shù)f(x)取得極值,所以f′(1)=1-a=0,所以a=1.
經(jīng)檢驗(yàn),a=1符合題意.(不檢驗(yàn)不扣分) …(4分)
(2)f′(x)=-a=,x>0.
令f′(x)=0得x=.因?yàn)閤∈(0,)時(shí),f′(x)>0,x∈(,+∞)時(shí),f′(x)<0,
所以f(x)在(0,)遞增,在(,+∞)遞減,…(5分)
①當(dāng)0<≤1,即a≥1時(shí),f(x)在(1,2)上遞減,所以x=1時(shí),f(x)取最大值f(1)=-a;
②當(dāng)1<<2,即<a<1時(shí),f(x)在(1,)上遞增,在( ,2)上遞減,
所以x=時(shí),f(x)取最大值f()=-lna-1;
③當(dāng)≥2,即0<a≤時(shí),f(x)在(1,2)上遞增,所以x=2時(shí),f(x)取最大值f(2)=ln2-2a.
綜上,①當(dāng)0<a≤時(shí),f(x)最大值為ln2-2a;②當(dāng)<a<1時(shí),f(x)最大值為-lna-1;
③當(dāng)a≥1時(shí),f(x)最大值為-a. …(8分)
(每種情形1分)
(3)因?yàn)榉匠?mf(x)=x2有唯一實(shí)數(shù)解,
所以x2-2mlnx-2mx=0有唯一實(shí)數(shù)解,
設(shè)g(x)=x2-2mlnx-2mx,
則g′(x)=,令g′(x)=0,x2-mx-m=0.
因?yàn)閙>0,x>0,所以x1=<0(舍去),x2=
當(dāng)x∈(0,x2)時(shí),g′(x)<0,g(x)在(0,x2)上單調(diào)遞減,
當(dāng)x∈(x2,+∞)時(shí),g′(x)>0,g(x)在(x2,+∞)單調(diào)遞增,
當(dāng)x=x2時(shí),g(x)取最小值g(x2). …(10分)


所以2mlnx2+mx2-m=0,因?yàn)閙>0,所以2lnx2+x2-1=0(*),
設(shè)函數(shù)h(x)=2lnx+x-1,因?yàn)楫?dāng)x>0時(shí),h(x)是增函數(shù),所以h(x)=0至多有一解.
因?yàn)閔(1)=0,所以方程(*)的解為x2=1,即=1,
解得m=. …(12分)
分析:(1)先求函數(shù)的定義域,然后求出導(dǎo)函數(shù),根據(jù)f(x)在x=1處取得極值,則f'(1)=0,求出a的值,然后驗(yàn)證即可;
(2)先求出a的范圍,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,①當(dāng)0<≤1,即a≥1時(shí),②當(dāng)1<<2,③當(dāng)≥2,分類討論后,研究函數(shù)的單調(diào)性,從而求出函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)研究函數(shù)是單調(diào)性得到函數(shù)的極值點(diǎn),根據(jù)函數(shù)圖象的變化趨勢,判斷何時(shí)方程2mf(x)=x2有唯一實(shí)數(shù)解,得到m所滿足的方程,解方程求解m.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,是一道綜合題,有一定的難度,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊答案