計算
3
-1
(3x2-2x+1)dx=
 
考點:定積分
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用定積分的運算法則將所求轉(zhuǎn)化為定積分的和差,然后分別找出原函數(shù)求值.
解答: 解:
3
-1
3x2dx+
3
-1
2xdx+
3
-1
1dx=(x3-x2+x)|
 
3
-1
=24;
故答案為:24
點評:本題考查了定積分的計算,只要正確找出原函數(shù),然后計算即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x+a|(a>-2)的圖象過點(2,1).
(1)求實數(shù)a的值;
(2)如圖所示的平面直角坐標(biāo)系中,每一個小方格的邊長均為1.試在該坐標(biāo)系中作出函數(shù)y=
f(x-a)+a
f(x)
的簡圖,并寫出(不需要證明)它的定義域、值域、奇偶性、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x>0,條件q:x≥1,則p是q成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列的前10項中,所有奇數(shù)項之和為85
1
4
,所有偶數(shù)項之和為170
1
2
,則S=a3+a6+a9+a12的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩艘輪船都要在某個泊位?4小時,假定它們在一晝夜的時間段中隨機地到達(dá),則這兩艘船中至少有一艘在停靠泊位時必須等待的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且a1=t,an+1=2Sn+1(n∈N).
(1)若t≠-
1
2
,求證:數(shù)列{Sn}不是等差數(shù)列;
(2)當(dāng)t為何值時,數(shù)列{an}是等比數(shù)列,并求出該等比數(shù)列的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,前4項的和S4=-20,前12項的和S12=132,求:
(1)數(shù)列{an}的通項公式;
(2)數(shù)列{an}前n項和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin(x-
π
4
)的圖象,只需將函數(shù)y=sinx的圖象(  )
A、向左平移
π
4
個長度單位
B、向右平移
π
4
個長度單位
C、向左平移
4
個長度單位
D、向右平移
4
個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β都是銳角,且sinα=
3
5
,cosβ=
12
13

(1)求cosα,sinβ的值;
(2)求角tan(α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案