三角形的三內(nèi)角A,B,C所對邊的長分別為a,b,c,設(shè)向量,若
(1)求角B的大小;
(2)用A表示sinA+sinC,記作f(A),求函數(shù)y=f(A)的單調(diào)增區(qū)間.
【答案】分析:(1)利用兩向量平行的性質(zhì)以及兩向量的左邊可求得a,b和c的關(guān)系式,代入余弦定理中求得cosB的值,進(jìn)而求得B.
(2)根據(jù)(1)中B,可知A+C=,進(jìn)而可把sinC轉(zhuǎn)化成sin( -A),展開后,利用兩角和公式化簡,利用正弦函數(shù)的單調(diào)區(qū)間得到函數(shù)y=f(A)的單調(diào)增區(qū)間即可.
解答:解:(1)因為向量,并且,
所以c(c-a)=(a+b)(b-a),即c2-ac=b2-a2,
∴cosB==
∴B=
(2)∵A+B+C=π,∴A+C=
∴sinA+sinC=sinA+sin( -A)=sinA+cosA+sinA=sin(A+),
可得:,
又因為0<A<,
所以0<A≤
所以函數(shù)y=f(A)的單調(diào)增區(qū)間為(0,].
點評:本題主要考查了余弦定理的應(yīng)用,兩角和公式的化簡求值與正弦函數(shù)的有關(guān)性質(zhì).考查了學(xué)生分析問題的能力和基本運算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三角形的三內(nèi)角A,B,C所對邊的長分別為a,b,c,設(shè)向量
m
=(c-a,b-a),
n
=(a+b,c),若
m
n

(1)求角B的大小.
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形的三內(nèi)角A,B,C所對邊的長分別為a,b,c,設(shè)向量
m
=(c-a,b-a),
n
=(a+b,c)
,若
m
n

(1)求角B的大;
(2)用A表示sinA+sinC,記作f(A),求函數(shù)y=f(A)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三內(nèi)角A、B、C所對邊的長分別為a、b、c,設(shè)向量
m
=(2a-c,b)
,
n
=(cosC,cosB)
,若
m
n

(1)求角B的大小;
(2)若△ABC的面積為
3
,求AC邊的最小值,并指明此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,2),向量
b
與向量
a
的夾角為
4
,且
a
b
=-2,
(1)求向量
b

(2)若
t
=(1,0)且
b
t
,
c
=(cosA,2cos 2
C
2
),其中A、C是△ABC的內(nèi)角,若三角形的三內(nèi)角A、B、C依次成等差數(shù)列,試求|
b
+
c
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南長郡中學(xué)高三年級分班考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分8分)

三角形的三內(nèi)角A,B,C所對邊的長分別為

求:

   (1)角B的大。

   (2)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案