已知z是復(fù)數(shù),z-i和
z
1+i
均為實(shí)數(shù).
(I)求復(fù)數(shù)z;
(Ⅱ)若復(fù)數(shù)(z-ti)2在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)在第一象限,求實(shí)數(shù)t的取值范圍.
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義,復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(I)設(shè)出實(shí)數(shù)z-i=a,代入
z
1+i
,再由該復(fù)數(shù)虛部為0求得a的值,則復(fù)數(shù)z可求;
(Ⅱ)把z代入(z-ti)2,展開平方運(yùn)算后由實(shí)部和虛部均大于0列不等式組求解t的取值范圍.
解答: 解:(I)∵z-i為實(shí)數(shù),設(shè)為a,
∴z=a+i,
z
1+i
=
a+i
1+i
=
(a+1)+(1-a)i
2
為實(shí)數(shù).
∴a=1.
∴z=1+i;
(Ⅱ)(z-ti)2=[1+(1-ti)]2=1-(1-t)2+2(1-t)i
∵(z-ti)2在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)在第一象限,
1-(1-t)2>0
2(1-t)>0
,解得:0<t<1.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則輸入的正整數(shù)a的可能取值的集合是( 。
A、{1,2,3,4,5}
B、{1,2,3,4,5,6}
C、{2,3,4,5}
D、{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=a且an+1+(-1)nan=2n-1(其中a為常數(shù)),Sn是數(shù)列{an}的前n項(xiàng)和,數(shù)列{bn}滿足bn=a2n
(1)求a1+a3的值;
(2)試判斷{bn}是否為等差數(shù)列,并說明理由;
(3)求Sn(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算(
1-i
1+i
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

魔術(shù)大師把一塊長(zhǎng)和寬都是13dm的地毯按圖(1)裁好,再按圖(2)拼成矩形.計(jì)算兩個(gè)圖形的面積,分別得到169dm2與168dm2.魔術(shù)師得意洋洋的說,他證明了169=168.你能揭穿魔術(shù)師的奧秘嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為28人,不會(huì)暈機(jī)的也是28人,而女乘客暈機(jī)為28人,不會(huì)暈機(jī)的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試判斷是否有95%的把握認(rèn)為是否暈機(jī)與性別有關(guān)?K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx-
4
)(ω>0)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)若f(
α
2
+
8
)=
24
25
,且α∈(-
π
2
,
π
2
),求tanα的值.
(Ⅲ)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象(完成列表并作圖).
(1)列表
x 0
8
8
π
y -1 1
(2)描點(diǎn),連線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|y=ln(x-2)+
3x-3
,x∈R},N={x||x-1|-|4-x|<a,x∈R},若M∩N≠∅,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,x),
b
=(-1,x),若2
a
-
b
b
垂直,則|
a
|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案