精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=
2
a,點E是SD上的點,且DE=λa(0<λ≤2)
(Ⅰ)求證:對任意的λ∈(0,2),都有AC⊥BE
(Ⅱ)設(shè)二面角C-AE-D的大小為θ,直線BE與平面ABCD所成的角為φ,若tanθ•tanφ=1,求λ的值.
分析:解法一:(幾何法)(Ⅰ)因為SD⊥平面ABCD,BD是BE在平面ABCD上的射影,由三垂線定理只要證AC⊥BD即可.
(Ⅱ)先找出θ和φ,因為由SD⊥平面ABCD知,∠DBE=φ,二面角C-AE-D的平面角可由三垂線定理法作出.
再用λ表示出tanθ和tanφ,代入tanθ•tanφ=1,解方程即可.
解法二:(向量法)因為DA.DC.DS兩兩垂直,故可建立空間直角坐標(biāo)系,由向量法求解.
(Ⅰ)寫出向量
AC
BE
的坐標(biāo),只要數(shù)量積為0即可.
(Ⅱ)分別求出平面ACE的法向量、平面ABCD與平面ADE的一個法向量,由夾角公式求出cosθ和sinφ,再由tanθ•tanφ=1求解即可.
解答:解:(Ⅰ)證法1:如圖1,連接BE、BD,由地面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE
(Ⅱ)解法1:如圖1,由SD⊥平面ABCD知,∠DBE=φ,
∵SD⊥平面ABCD,CD?平面ABCD,∴SD⊥CD.
又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.
連接AE、CE,過點D在平面SAD內(nèi)作DF⊥AE于F,連接CF,則CF⊥AE,
故∠CFD是二面角C-AE-D的平面角,即∠CFD=θ.
在Rt△BDE中,∵BD=2a,DE=λa∴tanφ=
DE
BD
=
λ
2

在Rt△ADE中,∵AD=
2
a
,DE=λa∴AE=a
λ2+2

從而DF=
AD•DE
AE
=
2
λa
λ2+2

在Rt△CDF中,tanθ=
CD
DF
=
λ2+2
λ

由tanθ•tanφ=1,得
λ2+2
λ
λ
2
=1
λ2+2
=2,所以λ2=2.
由0<λ≤2,解得λ=
2
,即為所求.
精英家教網(wǎng)

(Ⅰ)證法2:以D為原點,以DA.DC.DS的方向分別作為x,y,z軸的正方向建立如
圖2所示的空間直角坐標(biāo)系,則
D(0,0,0),A(
2
,0,0),B(
2
a,
2
a,0),
C(0,
2
a,0),E(0,0,λa),
AC
=(-
2
a,
2
a,0)
,
BE
=(-
2
a,
2
a,λa)

AC
BE
=2a2-2a2+0-λa=0
,即AC⊥BE.
(Ⅱ)解法2:
由(I)得
EA
=(
2
a,0,-λa)
EC
=(0,
2
a,-λa)
,B
E
=(-
2
a,-
2a
,λa)

設(shè)平面ACE的法向量為n=(x,y,z),則由n⊥
EA
,n⊥
EC
,
n•
EA
=0
n•
EC
=0
2
x-λz=0
2
y-λz=0
z=
2
,得n(λ,λ,
2
)

易知平面ABCD與平面ADE的一個法向量分別為
DS
=(0,0,2a)
DC
=(0,
2
a,0)

sinφ=
DS
BE
|
DS
|•|
BE
|
=
λ
λ2+4
,cosθ=
|
DC
•n|
|
DC
|•|n|
=
|λ|
2λ2+2

∵0<θ<
π
2
,λ>0
∴tanθ•tanφ=1?θ+φ=
π
2
?sinφ=cosθ?
λ
λ2+4
=
λ
2λ2+2
2=2.
由0<λ≤2,解得λ=
2
,即為所求.
點評:本題考查空間線線垂直的證明、空間垂直之間的相互轉(zhuǎn)化、空間角的求解,考查邏輯推理能力和運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
3
,點E、G分別在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)證明平面BG∥平面SDE;
(2)求面SAD與面SBC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點,AD=2,AB=1.SP與平面ABCD所成角為
π4
. 
(1)求證:平面SPD⊥平面SAP;
(2)求三棱錐S-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點,且SE=2EC,SA=6,AB=2.
(1)求證:平面EBD⊥平面SAC;
(2)求三棱錐E-BCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
(1)求證:四邊形ABCD是直角梯形;
(2)求異面直線SB與CD所成角的大小;
(3)求直線AC與平面SAB所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案