【題目】已知F1,F2分別是雙曲線C:的左、右焦點,若F2關(guān)于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線C的離心率為________.
【答案】2
【解析】
設(shè)F2關(guān)于漸近線的對稱點為M,F2M與漸近線交于點A,根據(jù)對稱關(guān)系和已知條件可得∠F1MF2為直角,根據(jù)勾股定理可得c=2a,由此可得離心率.
由題意,得F1(-c,0),F2(c,0),一條漸近線方程為y=x,
則F2到漸近線的距離為,
設(shè)F2關(guān)于漸近線的對稱點為M,F2M與漸近線交于點A,則|MF2|=2b,A為F2M的中點.
如圖:
又O是F1F2的中點,∴OA∥F1M,
∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理,得4c2=c2+4b2,
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故答案為:2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)已知,,設(shè)函數(shù)的最大值為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.
(1)證明:面面;
(2)當(dāng)為中點時,求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,點為線段上一動點,現(xiàn)將沿折起,使點在面內(nèi)的射影在直線上,當(dāng)點從運動到,則點所形成軌跡的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線段的中點,求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com