【題目】如圖,菱與四邊形相交于, 平面, 為的中點, .
(I)求證: 平面;
(II)求直線與平面成角的正弦值.
【答案】(I)見解析;(II).
【解析】試題分析:(I) 取的中點,連接,要證平面,只需證平面平面,又, 可得;
(Ⅱ)以為坐標原點,分別以所在直線為軸, 軸,過點與平面垂直的直線為軸,建立空間直角坐標系,用空間向量求解即可.
試題解析:
證明:(Ⅰ)取的中點,連接.
因為為菱形對角線的交點,所以為中點,又為中點,所以,
又因為分別為的中點,
所以,又因為,所以,
又,所以平面平面,
又平面,所以平面;
(Ⅱ)連接,設菱形的邊長,則由,得,
又因為,所以,
則在直角三角形中, ,所以,且由平面, ,得平面.
以為坐標原點,分別以所在直線為軸, 軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則
則,設為平面的一個法向量,則即令,得,所以,
又,所以,設直線與平面所成角為,則.所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為(為參數(shù), ),直線,若直線與曲線C相交于A,B兩點,且.
(Ⅰ)求;
(Ⅱ)若M,N為曲線C上的兩點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要條件
C.命題“若x<﹣1,則x2﹣2x﹣3>0”的否定為:“若x≥﹣1,則x2﹣2x﹣3≤0”
D.已知命題 p:x∈R,x2+x﹣1<0,則p:x∈R,x2+x﹣1≥0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位學生參加數(shù)學競賽培訓,他們在培訓期間8次模擬考試的成績如下: 甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學生成績的莖葉圖,并求學生乙成績的平均數(shù)和方差;
(2)從甲同學超過80分的6個成績中任取兩個,求這兩個成績中至少有一個超過90分的概率.
(3)甲同學超過80(分)的成績有82 81 95 88 93 84,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為, ()是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=mx2﹣mx﹣1.
(1)若對于x∈R,f(x)<0恒成立,求實數(shù)m的取值范圍;
(2)若對于x∈[1,3],f(x)<5﹣m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線為參數(shù)),為參數(shù)).
(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點對應的參數(shù)為為上的動點,求的中點到直線為參數(shù))距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com