【題目】如圖,菱與四邊形相交于 平面, 的中點(diǎn), .

(I)求證: 平面

(II)求直線與平面成角的正弦值.

【答案】(I)見解析;(II).

【解析】試題分析:(I) 取的中點(diǎn),連接,要證平面,只需證平面平面,又, 可得;

Ⅱ)以為坐標(biāo)原點(diǎn),分別以所在直線為軸, 軸,過點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系用空間向量求解即可.

試題解析:

證明:(Ⅰ)取的中點(diǎn),連接.

因?yàn)?/span>為菱形對角線的交點(diǎn),所以中點(diǎn),又中點(diǎn),所以

又因?yàn)?/span>分別為的中點(diǎn),

所以,又因?yàn)?/span>,所以,

,所以平面平面,

平面,所以平面;

Ⅱ)連接,設(shè)菱形的邊長,則由,得,

又因?yàn)?/span>,所以

則在直角三角形中, ,所以,且由平面, ,得平面.

為坐標(biāo)原點(diǎn),分別以所在直線為軸, 軸,過點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則

,設(shè)為平面的一個法向量,則,得,所以,

,所以,設(shè)直線與平面所成角為,則.所以直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為為參數(shù), ),直線,若直線與曲線C相交于A,B兩點(diǎn),且

(Ⅰ)求;

(Ⅱ)若M,N為曲線C上的兩點(diǎn),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要條件
C.命題“若x<﹣1,則x2﹣2x﹣3>0”的否定為:“若x≥﹣1,則x2﹣2x﹣3≤0”
D.已知命題 p:x∈R,x2+x﹣1<0,則p:x∈R,x2+x﹣1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),他們在培訓(xùn)期間8次模擬考試的成績?nèi)缦拢?甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學(xué)生成績的莖葉圖,并求學(xué)生乙成績的平均數(shù)和方差;
(2)從甲同學(xué)超過80分的6個成績中任取兩個,求這兩個成績中至少有一個超過90分的概率.
(3)甲同學(xué)超過80(分)的成績有82 81 95 88 93 84,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, 是角A、B、C成等差數(shù)列的(
A.充分非必要條件
B.充要條件
C.充分不必要條件
D.必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個焦點(diǎn)為, 是橢圓上的一個點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的上、下頂點(diǎn)分別為, )是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),如果的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mx2﹣mx﹣1.
(1)若對于x∈R,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍;
(2)若對于x∈[1,3],f(x)<5﹣m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點(diǎn)對應(yīng)的參數(shù)為上的動點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案