已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標(biāo)記錄如下:、、、.
(1)經(jīng)判斷點,在拋物線上,試求出的標(biāo)準(zhǔn)方程;
(2)求拋物線的焦點的坐標(biāo)并求出橢圓的離心率;
(3)過的焦點直線與橢圓交不同兩點且滿足,試求出直線的方程.
(1);(2);(3)或.
解析試題分析:(1)先設(shè)拋物線,然后將或代入可得,從而確定了的方程,也進(jìn)一步確定、不在上,只能在上;設(shè):,把點、代入得,求解即可確定的方程;(2)由(1)中所求得的方程不難得到的焦點及橢圓的離心率;(3)先假設(shè)所求直線的方程(或,不過此時要先驗證直線斜率不存在的情況),然后聯(lián)立直線與橢圓的方程,消去消去,得,得到,再得到,要使,只須,從中求解即可得到,從而可確定直線的方程.
試題解析:(1)設(shè)拋物線,則有,而、在拋物線上 2分
將坐標(biāo)代入曲線方程,得 3分
設(shè):,把點、代入得
解得
∴方程為 6分
(2)顯然,,所以拋物線焦點坐標(biāo)為
由(1)知,,
所以橢圓的離心率為 8分
(3)法一:直線過拋物線焦點,設(shè)直線的方程為,兩交點坐標(biāo)為,
由消去,得 10分
∴①
② 12分
由,即,得
將①②代入(*)式,得,解得 14分
所求的方程為:或 15分
法二:容易驗證直線的斜率不存在時,不滿足題意 9分
當(dāng)直線斜率存在時,直線過拋物線焦點,設(shè)其方程為,與的交點坐標(biāo)為
由
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設(shè)動直線l與拋物線E相切于點P,與直線y=-1相交于點Q,證明以PQ為直徑的圓恒過y軸上某定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心為原點,左、右焦點分別為、,離心率為,點是直線上任意一點,點在雙曲線上,且滿足.
(1)求實數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點的縱坐標(biāo)為,過點作動直線與雙曲線右支交于不同的兩點、,在線段上去異于點、的點,滿足,證明點恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線于兩點(三點互不相同),且滿足(且).
(1)求拋物線的焦點坐標(biāo)和準(zhǔn)線方程;
(2)設(shè)直線上一點,滿足,證明線段的中點在軸上;
(3)當(dāng)=1時,若點的坐標(biāo)為,求為鈍角時點的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足:,直線與的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點關(guān)于原點對稱,點在軸的射影為,連接 并延長交橢圓于
點,求證:以為直徑的圓經(jīng)過點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,M為CD的中點.
(1)求點M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),使,且P點到A、B 的距離和為定值,求點P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若+=8,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com