已知雙曲線的中心為原點(diǎn),左、右焦點(diǎn)分別為、,離心率為,點(diǎn)是直線上任意一點(diǎn),點(diǎn)在雙曲線上,且滿足.
(1)求實(shí)數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點(diǎn)的縱坐標(biāo)為,過(guò)點(diǎn)作動(dòng)直線與雙曲線右支交于不同的兩點(diǎn)、,在線段上去異于點(diǎn)、的點(diǎn),滿足,證明點(diǎn)恒在一條定直線上.

(1);(2)詳見解析;(3)詳見解析.

解析試題分析:(1)根據(jù)雙曲線的離心率列方程求出實(shí)數(shù)的值;(2)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,利用條件確定、之間的關(guān)系,再結(jié)合點(diǎn)在雙曲線上這一條件,以及斜率公式來(lái)證明直線與直線的斜率之積是定值;(3)證法一是先設(shè)點(diǎn)、的坐標(biāo)分別為,結(jié)合(2)得到,引入?yún)?shù),利用轉(zhuǎn)化為相應(yīng)的條件,利用坐標(biāo)運(yùn)算得到點(diǎn)的坐標(biāo)所滿足的關(guān)系式,進(jìn)而證明點(diǎn)恒在定直線上;證法二是設(shè)直線的方程為,將直線的方程與雙曲線的方程聯(lián)立,結(jié)合韋達(dá)定理,將條件進(jìn)行等價(jià)轉(zhuǎn)化為,結(jié)合韋達(dá)定理化簡(jiǎn)為,最后利用點(diǎn)在直線上得到,從而消去得到
,進(jìn)而證明點(diǎn)恒在定直線上.
試題解析:(1)根據(jù)雙曲線的定義可得雙曲線的離心率為,由于,解得,
故雙曲線的方程為;
(2)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,易知點(diǎn),
,
,因此點(diǎn)的坐標(biāo)為,
故直線的斜率,直線的斜率為,
因此直線與直線的斜率之積為,
由于點(diǎn)在雙曲線上,所以,所以,
于是有
(定值);
(3)證法一:設(shè)點(diǎn) 且過(guò)點(diǎn)的直線與雙曲線的右支交于不同的兩點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓C=1(ab>0)的左、右焦點(diǎn)分別是F1、F2,離心率為,過(guò)F1且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),過(guò)點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn).設(shè)直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓:的離心率,原點(diǎn)到過(guò)點(diǎn),的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動(dòng)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點(diǎn),,且,都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F(0,),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是∶1.
 
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PA,PB分別交橢圓C于另外兩點(diǎn)A,B,求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為,且滿足,試判斷直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為yxc=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過(guò)A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄如下:、、、
(1)經(jīng)判斷點(diǎn)在拋物線上,試求出的標(biāo)準(zhǔn)方程;
(2)求拋物線的焦點(diǎn)的坐標(biāo)并求出橢圓的離心率;
(3)過(guò)的焦點(diǎn)直線與橢圓交不同兩點(diǎn)且滿足,試求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0),過(guò)F2垂直于長(zhǎng)軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過(guò)F2的直線l與橢圓交于不同的兩點(diǎn)M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案