【題目】設(shè)對(duì)于任意實(shí)數(shù)x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣12.
【答案】
(1)解:設(shè)f(x)=|x+7|+|x﹣1|,則有f(x)= ,
當(dāng)x≤﹣7時(shí),f(x)有最小值8;當(dāng)﹣7≤x≤1時(shí),f(x)有最小值8;
當(dāng)x≥1時(shí),f(x)有最小值8.綜上f(x)有最小值8,所以,m≤8
(2)解:當(dāng)m取最大值時(shí)m=8,原不等式等價(jià)于:|x﹣3|﹣2x≤4,
等價(jià)于: ,或 ,
等價(jià)于:x≥3或﹣ ≤x≤3,
所以原不等式的解集為{x|x≥﹣ }
【解析】(1)要使不等式|x+7|+|x﹣1|≥m恒成立,需f(x)=|x+7|+|x﹣1|的最小值大于或等于m,問題轉(zhuǎn)化為求f(x)的最小值.(2)當(dāng)m取最大值8時(shí),原不等式等價(jià)于:|x﹣3|﹣2x≤4,去掉絕對(duì)值符號(hào),解此不等式.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解絕對(duì)值不等式的解法(含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B是單位圓上的兩點(diǎn),A,B兩點(diǎn)分別在第一、二象限,點(diǎn)C是圓與x軸正半軸的交點(diǎn),角∠AOB= ,若點(diǎn)A的坐標(biāo)為( , ),記∠COA=α.
(1)求 的值;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=(1+ )an+ .
(1)設(shè)bn= ,求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程2x2﹣bx+ =0的兩根為sinθ、cosθ,θ∈( , ).
(1)求實(shí)數(shù)b的值;
(2)求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,PA=PD= ,E是BC中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(1)求證:AD⊥PB;
(2)若Q是PC中點(diǎn),求二面角E﹣DQ﹣C的余弦值;
(3)若 ,當(dāng)PA∥平面DEQ時(shí),求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個(gè)公共點(diǎn)在y軸上,且在該點(diǎn)處兩條曲線的切線互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;
(3)若b=c=0,證明:對(duì)任意給定的正數(shù)a,總存在正數(shù)m,使得當(dāng)x時(shí),
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某商業(yè)中心O有通往正東方向和北偏東30方向的兩條街道,某公園P位于商業(yè)中心北偏東角(),且與商業(yè)中心O的距離為公里處,現(xiàn)要經(jīng)過公園P修一條直路分別與兩條街道交匯于A,B兩處。
(1)當(dāng)AB沿正北方向時(shí),試求商業(yè)中心到A,B兩處的距離和;
(2)若要使商業(yè)中心O到A,B兩處的距離和最短,請(qǐng)確定A,B的最佳位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=lnx,則函數(shù)g(x)=f(x)﹣sin4x的零點(diǎn)的個(gè)數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com