確定下列式子的符號:
(1)tan125°•sin273°;
(2)
tan108°
cos305°
;
(3)sin
5
4
π•cos
4
5
π•tan
11
6
π;
(4)
cos
5
6
π•tan
11
6
π
sin
2
3
π
考點(diǎn):三角函數(shù)值的符號
專題:三角函數(shù)的求值
分析:利用誘導(dǎo)公式即可判斷出符號.
解答: 解:(1)tan125°•sin273°=-tan55°•(-sin87°)=tan55°sin87°>0;
(2)
tan108°
cos305°
=
-tan72°
cos55°
<0;
(3)sin
5
4
π•cos
4
5
π•tan
11
6
π=-sin
π
4
•(-cos
π
5
)
•(-tan
π
6
)
=-sin
π
4
•cos
π
5
•tan
π
6
<0;
(4)
cos
5
6
π•tan
11
6
π
sin
2
3
π
=
-cos
π
6
•(-tan
π
6
)
sin
π
3
=
sin
π
6
sin
π
3
>0.
點(diǎn)評:本題考查了誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-∞,4)上的減函數(shù)f(x),使得f(m-sinx)≤f(
1+2m
-
7
4
+cos2x)對于一切實(shí)數(shù)均成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)M(-3,-3)的直線l與圓x2+y2+4y-21=0相交于A,B兩點(diǎn).設(shè)弦AB的中點(diǎn)為P,求動點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程組:
2x-y+4=0
x+2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[-1,1]上奇函數(shù),且對任意的a,b∈[-1,1],當(dāng)a+b≠0時,都有
f(a)+f(b)
a+b
<0,則不等式f(2x-
1
2
)<f(x-
1
4
)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲有一只放有x個紅球,y個黃球,z個白球的箱子,乙有一只放有3個紅球,2個黃球,1個白球的箱子,
(1)兩人各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時甲勝,異色時乙勝,若x+y+z=6(x,y,z∈N)用x、y、z表示甲勝的概率;
(2)在(1)下又規(guī)定當(dāng)甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時x、y、z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

簡便運(yùn)算:[(
0.25
2
2+
0.25
2
×0.275+
0.3
2
×0.275]×2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點(diǎn),且與雙曲線實(shí)軸垂直,又拋物線與雙曲線的一個交點(diǎn)為(3,2
6
)

(1)求拋物線與雙曲線的方程.
(2)已知直線y=ax+1與雙曲線交于A,B兩點(diǎn),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,EC⊥平面ABCD,CB=CD=CE.
(Ⅰ)求證:AC⊥平面CBE;
(Ⅱ)求二面角E-BD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案