一高考考生咨詢中心有A、B、C三條咨詢熱線.已知某一時刻熱線A、B占線的概率均為0.5,熱線C占線的概率為0.4,各熱線是否占線相互之間沒有影響,假設該時刻有ξ條熱線占線,則隨機變量ξ的期望為________.

 

1.4

【解析】隨機變量ξ可能取的值為0、1、2、3.

依題意,得P(ξ=0)=0.15,P(ξ=1)=0.4,

P(ξ=2)=0.35,P(ξ=3)=0.1

∴ξ的分布列為

 

ξ

0

1

2

3

P

0.15

0.4

0.35

0.1

∴它的期望為E(ξ)=0×0.15+1×0.4+2×0.35+3×0.1=1.4.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第4課時練習卷(解析版) 題型:填空題

袋中有1個白球,2個黃球,先從中摸出一球,再從剩下的球中摸出一球,兩次都是黃球的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第1課時練習卷(解析版) 題型:填空題

根據下圖所示的偽代碼,輸出的結果T為________.

T←1

I←3

While I<20

T←T+Ⅰ

I←I+2

End While

Print T

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

為防止山體滑坡,某地決定建設既美化又防護的綠化帶,種植松樹、柳樹等植物.某人一次種植了n株柳樹,各株柳樹成活與否是相互獨立的,成活率為p,設ξ為成活柳樹的株數(shù),數(shù)學期望E(ξ)=3,標準差σ(ξ)為.

(1)求n、p的值并寫出ξ的分布列;

(2)若有3株或3株以上的柳樹未成活,則需要補種,求需要補種柳樹的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

某電器商經過多年的經驗發(fā)現(xiàn)本店每個月售出的電冰箱的臺數(shù)ξ是一個隨機變量,它的分布列為P(ξ=i)=(i=1,2,…,12);設每售出一臺電冰箱,電器商獲利300元.如銷售不出,則每臺每月需花保管費100元.問電器商每月初購進多少臺電冰箱才能使月平均收益最大?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第5課時練習卷(解析版) 題型:解答題

電視臺綜藝頻道組織的闖關游戲,游戲規(guī)定前兩關至少過一關才有資格闖第三關,闖關者闖第一關成功得3分,闖第二關成功得3分,闖第三關成功得4分.現(xiàn)有一位參加游戲者單獨闖第一關、第二關、第三關成功的概率分別為、,記該參加者闖三關所得總分為ξ.

(1)求該參加者有資格闖第三關的概率;

(2)求ξ的分布列和數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第5課時練習卷(解析版) 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數(shù)兌換獎品.若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≤3的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第4課時練習卷(解析版) 題型:填空題

現(xiàn)在某類病毒記作XmYn,其中正整數(shù)m,n(m≤7,n≤9)可以任意選取,則m,n都取到奇數(shù)的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第9課時練習卷(解析版) 題型:解答題

如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;

(2)設動直線l與拋物線E相切于點P,與直線y=-1相交于點Q.證明:以PQ為直徑的圓恒過y軸上某定點.

 

查看答案和解析>>

同步練習冊答案