設(shè)函數(shù)。

(Ⅰ)求函數(shù)的最小正周期,并判斷奇偶性;

(Ⅱ)設(shè)A,B,C的三個內(nèi)角,若,且C為銳角,求

(Ⅰ)函數(shù)的最小正周期為,為非奇非偶函數(shù);

(Ⅱ)。


解析:

(Ⅰ)

 =。

∴函數(shù)的最小正周期,

,∴函數(shù)為非奇非偶函數(shù)。

(Ⅱ)∵, ∴, ∵C為銳角,

   ,又∵在ABC 中,  cosB =, ∴, 。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的單調(diào)遞增區(qū)間;
(2)如果函f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時,設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2時,函h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當(dāng)a=-2,b=4時,求證2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最

2當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案