三棱錐P-ABC的四個(gè)頂點(diǎn)均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,則該球的體積為( 。
A、16
3
π
B、32
3
π
C、48π
D、64
3
π
考點(diǎn):球內(nèi)接多面體
專(zhuān)題:
分析:由題意把A、B、C、P擴(kuò)展為三棱柱如圖,求出上下底面中心連線的中點(diǎn)與A的距離為球的半徑,然后求出球的體積.
解答: 解:由題意畫(huà)出幾何體的圖形如圖,
把A、B、C、P擴(kuò)展為三棱柱,
上下底面中心連線的中點(diǎn)與A的距離為球的半徑,
PA=2AB=6,OE=3,△ABC是正三角形,∴AB=3,
∴AE=
2
3
AB2-(
1
2
AB)2
=
3

AO=
32+(
3
)2
=2
3

所求球的體積為:
3
(2
3
3=32
3
π.
故選:B.
點(diǎn)評(píng):本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補(bǔ)法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足約束條件:
x≥2
y≥x
2x+y≤12
,則z=x2+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
π
3
0
sinxdx
,則(x+
1
ax
)6
的展開(kāi)式中的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x+y≤2
y≤x
y≥0
,則z=3x+y的最大值是( 。
A、0B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={X∈N+|x2-x-6<0},i為虛數(shù)單位,復(fù)數(shù)z=
2
1+i
的實(shí)部,虛部,模分別為a,b,t,則下列選項(xiàng)正確的是( 。
A、a+b∈MB、t∈M
C、b∈MD、a∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x、y滿足條件
3x-5y+6≥0
2x+3y-15≤0
y≥0
,當(dāng)且僅當(dāng)x=y=3時(shí),z=ax-y取最小值,則實(shí)數(shù)a的取值范圍是( 。
A、(-
2
3
,
3
5
)
B、(-
2
3
3
4
)
C、(-
3
4
2
3
)
D、(
3
4
,
3
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b滿足:-1<a-b<3且2<a+b<4,則2a-3b的取值范圍是( 。
A、(-
13
2
 ,
17
2
)
B、(-
3
2
 ,
11
2
)
C、(-
9
2
 ,
13
2
)
D、(-
7
2
 ,
13
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:①2013年考入清華大學(xué)的性格外向的學(xué)生能組成一個(gè)集合;②空集∅⊆{0};③數(shù)集{2x,x2-x}中,實(shí)數(shù)x的取值范圍是{x|x≠0}.其中正確的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A,B兩點(diǎn).
(Ⅰ)寫(xiě)出拋物線C2的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:以AB為直徑的圓過(guò)原點(diǎn);
(Ⅲ)若坐標(biāo)原點(diǎn)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)P在拋物線C2上,直線l與橢圓C1相切,求橢圓C1的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案