【題目】某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1扯皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:
A | B | C | |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤為3萬元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤.
【答案】
(1)解:x,y滿足的條件關(guān)系式為: .
作出平面區(qū)域如圖所示:
(2)解:設(shè)利潤為z萬元,則z=2x+3y.
∴y=﹣ .
∴當(dāng)直線y=﹣ 經(jīng)過點(diǎn)B時(shí),截距 最大,即z最大.
解方程組 得B(20,24).
∴z的最大值為2×20+3×24=112.
答:當(dāng)生產(chǎn)甲種肥料20噸,乙種肥料24噸時(shí),利潤最大,最大利潤為112萬元
【解析】(1)根據(jù)原料的噸數(shù)列出不等式組,作出平面區(qū)域;(2)令利潤z=2x+3y,則y=﹣ ,結(jié)合可行域找出最優(yōu)解的位置,列方程組解出最優(yōu)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), , .
(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)擬建立一個(gè)藝術(shù)博物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從個(gè)招標(biāo)問題中隨機(jī)抽取個(gè)問題,已知這個(gè)招標(biāo)問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對(duì)每題的回答都是相互獨(dú)立,互不影響的.
(1)求甲、乙兩家公司共答對(duì)道題目的概率;
(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx,其中ω>0,若f(x)相鄰兩條對(duì)稱軸間的距離不小于
(1)求ω的取值范圍及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a= ,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐P﹣ABCD,B1為PB的中點(diǎn),D1為PD的中點(diǎn),則兩個(gè)棱錐A﹣B1CD1 , P﹣ABCD的體積之比是( )
A.1:4
B.3:8
C.1:2
D.2:3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)貧困家庭自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶貸款額為萬元,貸款期限有個(gè)月、個(gè)月、個(gè)月、個(gè)月、個(gè)月五種,這五種貸款期限政府分別需要補(bǔ)助元、元、元、元、元,從年享受此項(xiàng)政策的困難戶中抽取了戶進(jìn)行了調(diào)查統(tǒng)計(jì),選取貸款期限的頻數(shù)如下表:
貸款期限 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 個(gè)月 |
頻數(shù) |
以商標(biāo)各種貸款期限的頻率作為年貧困家庭選擇各種貸款期限的概率.
(1)某小區(qū)年共有戶準(zhǔn)備享受此項(xiàng)政策,計(jì)算其中恰有兩戶選擇貸款期限為個(gè)月的概率;
(2)設(shè)給享受此項(xiàng)政策的某困難戶補(bǔ)貼為元,寫出的分布列,若預(yù)計(jì)年全市有萬戶享受此項(xiàng)政策,估計(jì)年該市共要補(bǔ)貼多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,a2=2,且an+1=2an+3an﹣1(n≥2,n∈N+).
(1)設(shè)bn=an+1+an(n∈N+),求證{bn}是等比數(shù)列;
(2)(i)求數(shù)列{an}的通項(xiàng)公式;
(ii)求證:對(duì)于任意n∈N+都有 + +…+ + < 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù), 是函數(shù)的兩個(gè)零點(diǎn), 是函數(shù)的導(dǎo)函數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com