【題目】某地區(qū)擬建立一個(gè)藝術(shù)博物館,采取競(jìng)標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過(guò)層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從個(gè)招標(biāo)問(wèn)題中隨機(jī)抽取個(gè)問(wèn)題,已知這個(gè)招標(biāo)問(wèn)題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對(duì)每題的回答都是相互獨(dú)立,互不影響的.

(1)求甲、乙兩家公司共答對(duì)道題目的概率;

(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競(jìng)標(biāo)成功的可能性更大?

【答案】(1)(2)甲公司競(jìng)標(biāo)成功的可能性更大.

【解析】試題分析:(1)分兩種情況求概率:甲答對(duì)道題、乙答對(duì)道題;甲答對(duì)道題、乙答對(duì)道題;其中甲答對(duì)道題概率為, 乙答對(duì)道題概率為,最后根據(jù)概率乘法公式與加法公式求概率,(2)分別求甲、乙公司正確完成面試的題數(shù)期望和方差,期望較大、方差較小的公司競(jìng)標(biāo)成功的可能性更大.先確定隨機(jī)變量可能取法,求出對(duì)應(yīng)概率(甲答對(duì)道題概率為, 乙答對(duì)道題概率為),利用期望公式及方差公式求期望與方差.

試題解析:(1)由題意可知,所求概率.

(2)設(shè)甲公司正確完成面試的題數(shù)為,則的取值分別為 , .

, , .

的分布列為:

.

設(shè)乙公司正確完成面試的題為,則取值分別為, , .

, ,

,

的分布列為:

.(或,

.( )

, 可得,甲公司競(jìng)標(biāo)成功的可能性更大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過(guò)4噸的部分按2元/噸收費(fèi),超過(guò)4噸但不超過(guò)8噸的部分按4元/噸收費(fèi),超過(guò)8噸的部分按8元/噸收費(fèi).

(1)求居民月用水量費(fèi)用(單位:元)關(guān)于月用電量(單位:噸)的函數(shù)解析式;

(2)為了了解居民的用水情況,通過(guò)抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過(guò)16元的占60%,求的值;

(3)若地區(qū)居民用水量平均值超過(guò)6噸,則說(shuō)明該地區(qū)居民用水沒(méi)有節(jié)約意識(shí)在滿足(2)的條件下,請(qǐng)你估計(jì)市居民用水是否有節(jié)約意識(shí)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)EF、G分別是正方體ABCDA1B1C1D1的棱AB、BC、B1C1的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號(hào)).

以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;

過(guò)點(diǎn)F、D1、G的截面是正方形;

點(diǎn)P在直線FG上運(yùn)動(dòng)時(shí),總有APDE;

點(diǎn)Q在直線BC1上運(yùn)動(dòng)時(shí),三棱錐AD1QC的體積是定值;

點(diǎn)M是正方體的平面A1B1C1D1內(nèi)的到點(diǎn)DC1距離相等的點(diǎn),則點(diǎn)M的軌跡是一條線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。

①求所選2人都是男生的概率;

②求所選2人恰有1名女生的概率;

③求所選2人中至少有1名女生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]

(1)求頻率分布圖中a的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在[40,60]的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在[40,50]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期中央電視臺(tái)播出的《中國(guó)詩(shī)詞大會(huì)》火遍全國(guó),下面是組委會(huì)在選拔賽時(shí)隨機(jī)抽取的100名選手的成績(jī),按成績(jī)分組,得到的頻率分布表如下所示:

組號(hào)

分組

頻數(shù)

頻率

第1組

第2組

第3組

20

第4組

20

第5組

10

合計(jì)

100

(1)請(qǐng)先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖(用陰影表示);

(2)為了能選拔出最優(yōu)秀的選手,組委會(huì)決定在筆試成績(jī)高的第3、4、5組中用分層抽樣抽取5名選手進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名選手進(jìn)入第二輪面試;

(3)在(2)的前提下,組委會(huì)決定在5名選手中隨機(jī)抽取2名選手接受考官進(jìn)行面試,求:第4組至少有一名選手被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、C(4,0),半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓My軸截得的弦長(zhǎng)為 r.

(1)求圓M的方程;(2)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點(diǎn),且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案