【題目】已知函數(shù), , .
(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;
(2)求證: .
【答案】(1)的取值范圍為 (2)證明見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,求出m的范圍即可;(2)設(shè)g(x)=f2(x)-f3(x)-2f1′(x)=ex-lnx-2,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,求出g(x)的最小值,從而證出結(jié)論.
試題解析:(1)由題意得,所以,因?yàn)?/span>,
所以
若函數(shù)在區(qū)間上單調(diào)遞增,則在上恒成立,即在上恒成立,所以
若函數(shù)在區(qū)間上單調(diào)遞減,則在上恒成立,
即在上恒成立,所以
綜上,實(shí)數(shù)的取值范圍為.
(2)設(shè)
則,設(shè),則,所以在上單調(diào)遞增,
由, 得,存在唯一的使得,
所以在上有,在上有
所以在上單調(diào)遞減,在遞增.
所以,故, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=﹣6,a6=0.
(1)求{an}的通項(xiàng)公式.
(2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3 , 求{bn}的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)生的專業(yè)能力參數(shù)可有效衡量醫(yī)生的綜合能力,越大,綜合能力越強(qiáng),并規(guī)定: 能力參數(shù)不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機(jī)抽取300名醫(yī)生進(jìn)行專業(yè)能力參數(shù)考核,得到如圖所示的能力的頻率分布直方圖:
(Ⅰ)求出這個(gè)樣本的合格率、優(yōu)秀率;
(Ⅱ)現(xiàn)用分層抽樣的方法從中抽出一個(gè)樣本容量為20的樣本,再?gòu)倪@20名醫(yī)生中隨機(jī)選出2名.
①求這2名醫(yī)生的能力參數(shù)為同一組的概率;
②設(shè)這2名醫(yī)生中能力參數(shù)為優(yōu)秀的人數(shù)為,求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬(wàn)元,根據(jù)以往的經(jīng)驗(yàn),每季收獲的此種水果能全部售完,且水果的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量具有隨機(jī)性,互不影響,具體情況如表:
(Ⅰ)設(shè)表示在這塊地種植此水果一季的利潤(rùn),求的分布列及期望;
(Ⅱ)在銷售收入超過5萬(wàn)元的情況下,利潤(rùn)超過5萬(wàn)元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢,一片心,誠(chéng)信用水”活動(dòng),學(xué)生在購(gòu)水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(單位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y關(guān)于x的線性回歸方程;
(2)預(yù)測(cè)售出8箱水的收益是多少元?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為: = , = ﹣ ,
參考數(shù)據(jù):7×165+6×142+6×148+5×125+6×150=4420.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為梯形, , 平面, , , , 為中點(diǎn).
(1)求證:平面平面;
(2)線段上是否存在一點(diǎn),使平面?若有,請(qǐng)找出具體位置,并進(jìn)行證明:若無(wú),請(qǐng)分析說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的空間幾何體中,底面四邊形為正方形, , ,平面平面, , , .
(1)求二面角的大小;
(2)若在平面上存在點(diǎn),使得平面,試通過計(jì)算說明點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,甲船在A處,乙船在A處的南偏東45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,應(yīng)沿什么方向,用多少h能盡快追上乙船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1扯皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:
A | B | C | |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬(wàn)元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤(rùn)為3萬(wàn)元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com