當a>0,a≠1時,函數(shù)f(x)=loga(x-1)+1的圖象恒過定點A,若點A在直線mx-y+n=0上,則4m+2n的最小值是   
【答案】分析:先根據(jù)函數(shù)解析式推斷出函數(shù)圖象恒過(2,1)點,求得A點坐標,把A點代入直線方程求得m和n的關系式,進而根據(jù)均值不等式求得4m+2n的最小值.
解答:解:整理函數(shù)解析式得f(x)-1=loga(x-1),故可知函數(shù)f(x)的圖象恒過(2,1)即A(2,1),
故2m+n=1.
∴4m+2n≥2=2=2
當且僅當4m=2n,即2m=n,
即n=,m=時取等號.
∴4m+2n的最小值為2
故答案為:2
點評:本題主要考查了基本不等式在最值問題中的應用.解題的時候注意等號成立的條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

當a>0,a≠1時,函數(shù)f(x)=loga(x-1)+1的圖象恒過定點A,若點A在直線mx-y+n=0上,則4m+2n的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2、當a>0且a≠1時,函數(shù)y=ax-1的圖象一定經(jīng)過
(1,1)
點,函數(shù)y=loga(x+1)的圖象一定經(jīng)過
(0,0)
點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①y=2x與y=log2x互為反函數(shù),其圖象關于直線y=x對稱;
②已知函數(shù)f(x-1)=x2-2x+1.,則f(5)=26;
③當a>0且a≠1時,函數(shù)f(x)=ax-2-3必過定點(2,-2);
④函數(shù)y=(
12
)|x|
的值域是(0,+∞);
上述命題中的所有正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a>0,a≠1時,函數(shù)f(x)=ax-1+1的圖象經(jīng)過的定點的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源:2004年高考教材全程總復習試卷·數(shù)學 題型:013

設1<x<2,則下列各式正確的是

[  ]

A.當a>0且a≠1時,

B.當a>0且a≠1時,

C.當0<a<1時,

D.當a>1時,

查看答案和解析>>

同步練習冊答案