【題目】已知
(1)求曲線在點(diǎn)出的切線方程;
(2)設(shè)函數(shù),若不等式對恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)
【解析】分析:(1)求出,由的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2),等價于,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得要滿足對恒成立,只需,從而可得結(jié)果.
詳解:(1)由題知:,則,
∴曲線在點(diǎn)處切線的斜率為
所以,切線方程為,即.
(2)由題知:,即,
令,則,
令解得,
∴在單增;單減,
又∵有唯一零點(diǎn)
所以,可作出函數(shù)的示意圖,
要滿足對恒成立,只需解得.即實(shí)數(shù)的取值范圍是
法二:令,則,
令,則 , 令,則,
∴在單增,單減;,故對恒成立.
∴在單減,
又∵對恒成立,令得
∴,無論在有無零點(diǎn),
∴在上的最小值只可能為或,
要恒成立,
∴且,
∴.即實(shí)數(shù)的取值范圍是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)設(shè)不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的5個樣本點(diǎn),數(shù)值如下表:
| 0.25 | 0.5 | 1 | 2 | 4 |
16 | 12 | 5 | 2 | 1 |
(1)根據(jù)散點(diǎn)圖判斷,哪一個適宜作為關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果試建立與之間的回歸方程.(注意或計(jì)算結(jié)果保留整數(shù))
(3)由(2)中所得設(shè)z=+且,試求z的最小值。
參考數(shù)據(jù)及公式如下:
,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的極小值;
(2)若函數(shù)在有個零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若函數(shù)在的三個零點(diǎn)分別為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)對任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-ABC中,AB=BC=,BB=2,ABC=90,E、F分別為AA、CB的中點(diǎn),沿棱柱的表面從E到F兩點(diǎn)的最短路徑的長度為_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩條對稱軸之間的距離為,且圖象上一個最低點(diǎn)為M.
(1)求ω,φ的值;
(2)求f(x)的圖像的對稱中心;
(3)當(dāng)x∈時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,D是 的中點(diǎn),BD交AC于E. (Ⅰ)求證:DC2=DEDB;
(Ⅱ)若CD=2 ,O到AC的距離為1,求⊙O的半徑r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三位老師分別教數(shù)學(xué)、英語、體育、勞技、語文、閱讀六門課,每位教兩門.已知:
(1)體育老師和數(shù)學(xué)老師住在一起,
(2)A老師是三位老師中最年輕的,
(3)數(shù)學(xué)老師經(jīng)常與C老師下象棋,
(4)英語老師比勞技老師年長,比B老師年輕,
(5)三位老師中最年長的老師比其他兩位老師家離學(xué)校遠(yuǎn).
問:A、B、C三位老師每人各教哪幾門課?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com