【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點的任一弦(不經(jīng)過點),設直線與直線相交于點,記, , 的斜率為, , .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

【答案】(Ⅰ) ;(Ⅱ)存在常數(shù)符合題意.

【解析】試題分析:(1根據(jù)離心率得a,b,c三者關系,再將P點坐標代入橢圓方程,解得 .2先根據(jù)兩點斜率公式化簡,以及,再利用直線方程與橢圓方程聯(lián)立方程組,結合韋達定理化簡,最后作商得的值

試題解析: 在橢圓上得,

依題設知,則

②帶入①解得 , .

故橢圓的方程為.

由題意可設的斜率為,

則直線的方程為

代入橢圓方程并整理,得

, ,則有

,

在方程③中令得, 的坐標為 .

從而, , .

注意到, , 共線,則有,即有.

所以

④代入⑤得,

,所以,故存在常數(shù)符合題意.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx﹣ (a>0),g(x)=4x+ + ,且y=f(x+ )為偶函數(shù).設集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,記f(x)在A上的最大值與最小值分別為M,N,求M﹣N;
(2)若對任意的實數(shù)t,總存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)對x∈[0,1]恒成立,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F作垂直于x軸的直線交拋物線于A,B,兩點,△AOB的面積為8,直線l與拋物線C相切于Q點,P是l上一點(不與Q重合).

(1)求拋物線C的方程;
(2)若以線段PQ為直徑的圓恰好經(jīng)過F,求|PF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,點P是正方體棱上的一點(不包括棱的端點),滿足|PB|+|PD1|= 的點P的個數(shù)為;若滿足|PB|+|PD1|=m的點P的個數(shù)為6,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2017年第一季度五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量和增速均居同一位的省只有1個;

②與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長;

③去年同期的總量前三位是江蘇、山東、浙江;

④2016年同期浙江的總量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

寫出曲線的極坐標的方程以及曲線的直角坐標方程;

若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

求不等式的解集;

若函數(shù)的最小值為,整數(shù)、滿足,求證.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點的任一弦(不經(jīng)過點),設直線與直線相交于點,記, , 的斜率為 , .問:是否存在常數(shù),使得?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】①一個命題的逆命題為真,它的否命題也一定為真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
的充要條件;
④“am2<bm2”是“a<b”的充分必要條件.
以上說法中,判斷錯誤的有

查看答案和解析>>

同步練習冊答案