【題目】①一個命題的逆命題為真,它的否命題也一定為真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
③ 是 的充要條件;
④“am2<bm2”是“a<b”的充分必要條件.
以上說法中,判斷錯誤的有 .
【答案】③④
【解析】解:根據(jù)題意,依次分析4個命題:①、一個命題的逆命題與其否命題互為逆否命題,則若其逆命題為真,其否命題也一定為真,①正確;②、若∠B=60°,則∠A+∠C=120°,有∠A+∠C=2∠B,則∠A,∠B,∠C三個角成等差數(shù)列,反之若∠A,∠B,∠C三個角成等差數(shù)列,有∠A+∠C=2∠B,又由∠A+∠B+∠C=180°,則∠B=60°,故在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件,②正確;③、當(dāng)x= ,y= ,則滿足 ,而不滿足 ,則 是 的不必要條件,③錯誤;④、若a<b,當(dāng)m=0時,有am2=bm2 , 則“am2<bm2”是“a<b”的不必要條件,④錯誤;
所以答案是③④.
【考點精析】本題主要考查了四種命題的真假關(guān)系的相關(guān)知識點,需要掌握一個命題的真假與其他三個命題的真假有如下三條關(guān)系:(原命題 逆否命題)①、原命題為真,它的逆命題不一定為真;②、原命題為真,它的否命題不一定為真;③、原命題為真,它的逆否命題一定為真才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.
求橢圓的方程;
是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記, , 的斜率為, , .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再將得到的圖象上所有點向右平行移動θ(θ>0)個單位長度,得到的圖象關(guān)于直線x= 對稱,則θ的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, , , , 是圓柱底面圓周的四等分點, 是圓心, , , 與底面垂直,底面圓的直徑等于圓柱的高.
(1)證明: ;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若, ,對任意, , 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中, ,且對任意正整數(shù)都成立,數(shù)列的前項和為.
(1)若,且,求;
(2)是否存在實數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請說明理由;
(3)若,求.(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若沿著三條中位線折起后能夠拼接成一個三棱錐,則稱這樣的為“和諧三角形”,設(shè)的三個內(nèi)角分別為, , ,則下列條件不能夠確定為“和諧三角形”的是
A. ; B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某蔬菜商店買進(jìn)的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請根據(jù)上表數(shù)據(jù)在所給網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留2位有效數(shù)字);
(3)根據(jù)(2)中的計算結(jié)果,若該蔬菜商店買進(jìn)土豆40噸,則預(yù)計可以銷售多少天(計算結(jié)果保留整數(shù))?
附: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com