【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
寫出曲線的極坐標的方程以及曲線的直角坐標方程;
若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.
【答案】(Ⅰ)曲線的極坐標方程為: ;曲線的直角坐標方程為:
.(Ⅱ) .
【解析】試題分析:(1)先消參數(shù)得的普通方程,再根據(jù)得曲線的極坐標的方程,利用將曲線的極坐標方程化為直角坐標方程(2)先求直線參數(shù)方程,再代入的普通方程,利用韋達定理以及參數(shù)幾何意義求的值.
試題解析: 由題意的方程為: 可得的普通方程為: ,
將代入曲線方程可得: .
因為曲線的極坐標方程為,
所以.
又, , .
所以.
所以曲線的極坐標方程為: ;曲線的直角坐標方程為:
.
因為點,化為直角坐標為所以.
因為直線過點且傾斜角為,所以直線的參數(shù)方程為(為參數(shù)),代入中可得: ,
所以由韋達定理: , ,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(m,n),求:
(1)點P在直線x+y=7上的概率;
(2)點P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.
求橢圓的方程;
是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記, , 的斜率為, , .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:x2+(y﹣4)2=4,點P是直線l:x﹣2y=0上的一動點,過點P作圓M的切線PA、PB,切點為A、B.
(1)當切線PA的長度為2 時,求點P的坐標;
(2)若△PAM的外接圓為圓N,試問:當P運動時,圓N是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;
(3)求線段AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲袋中有1個黃球和2個紅球,乙袋中有2個黃球和2個紅球,現(xiàn)隨機地從甲袋中取出兩個球放入乙袋中,然后從乙袋中隨機取出1個球,則從乙袋中取出紅球的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
寫出曲線的極坐標的方程以及曲線的直角坐標方程;
若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中, ,且對任意正整數(shù)都成立,數(shù)列的前項和為.
(1)若,且,求;
(2)是否存在實數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請說明理由;
(3)若,求.(用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com