已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)單調(diào)增區(qū)間;
(3)若存在,使得是自然對數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

(1)  (2) 單調(diào)增區(qū)間為 (3)

解析試題分析:⑴因?yàn)楹瘮?shù),
所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/0/wifgt.png" style="vertical-align:middle;" />,所以函數(shù)在點(diǎn)處的切線方程為
⑵由⑴,
因?yàn)楫?dāng)時,總有上是增函數(shù),
,所以不等式的解集為,
故函數(shù)的單調(diào)增區(qū)間為
⑶因?yàn)榇嬖?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/d/fxjor1.png" style="vertical-align:middle;" />,使得成立,
而當(dāng)時,,
所以只要即可.
又因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/f/1blsd3.png" style="vertical-align:middle;" />,的變化情況如下表所示:










減函數(shù)
極小值
增函數(shù)
 
所以上是減函數(shù),在上是增函數(shù),所以當(dāng)時,的最小值的最大值中的最大值.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f0/8/okyxm.png" style="vertical-align:middle;" />,
令,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/d/x5oan1.png" style="vertical-align:middle;" />,
所以上是增函數(shù).
,故當(dāng)時,,即;
當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/65/0/n4vu91.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;    (Ⅱ)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x+3x+9x+a
⑴求f(x)的單調(diào)遞減區(qū)間;⑵若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù)
(1)若,寫出函數(shù)的單調(diào)遞增區(qū)間(不必證明);
(2)若,當(dāng)時,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)判斷的奇偶性
(2)用定義法證明上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在,使得若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求函數(shù)上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)有兩個極值點(diǎn),且.
(1)求實(shí)數(shù)的取值范圍;
(2)討論函數(shù)的單調(diào)性;
(3)若對任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為實(shí)數(shù),
(1)若,求上最大值和最小值;
(2)若上都是遞增的,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案