【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A、B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C普通方程;
(2)線段MA,MB長(zhǎng)度分別記為|MA|,|MB|,求|MA||MB|的值.
【答案】
(1)解:∵直線l的參數(shù)方程為 (t為參數(shù)),
∴直線l的普通方程為:x﹣y+1=0,
∴直線l的極坐標(biāo)方程為:ρcosθ﹣ρsinθ+1=0,即 ,
∵曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,∴ρ2cos2θ=ρsinθ,
∴曲線C普通方程為:y=x2
(2)解:將 代入y=x2,
得 ,
∴|MA||MB|=|t1t2|=2
【解析】(1)先求出直線l的普通方程,再求出直線l的極坐標(biāo)方程,曲線C的極坐標(biāo)方程是ρ2cos2θ=ρsinθ,由此能求出曲線C普通方程.(2)將 代入y=x2 , 能求出|MA||MB|的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BA,CD的延長(zhǎng)線相交于點(diǎn)E,EF∥DA,并與CB的延長(zhǎng)線交于點(diǎn)F,F(xiàn)G切⊙O于G.
(1)求證:BEEF=CEBF;
(2)求證:FE=FG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的將數(shù)量X(單位:mm)對(duì)工期的影響如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延誤天數(shù)Y | 0 | 2 | 6 | 10 |
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(I)工期延誤天數(shù)Y的均值與方差;
(Ⅱ)在降水量X至少是300的條件下,工期延誤不超過6天的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù).,若方程在區(qū)間上有四個(gè)不同的根,則
A. -8 B. -4 C. 8 D. -16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
①“已知函數(shù)y=f(x),x∈ D,若D關(guān)于原點(diǎn)對(duì)稱,則函數(shù)y=f(x),x∈ D為奇函數(shù)”的逆命題;
②“對(duì)應(yīng)邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實(shí)根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列命題:①“若α=,則tan α=1”的逆否命題;②若f(x)=cos x,則f(x)為周期函數(shù);③“若a=b,則|a|=|b|”的逆命題;④“若xy=0,則x,y中至少有一個(gè)為零”的否命題.其中真命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線、橢圓都經(jīng)過點(diǎn)M(1,2),它們?cè)?/span>x軸上有共同焦點(diǎn),橢圓的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).則橢圓的長(zhǎng)軸長(zhǎng)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形,,C.
(1)求證:直線直線;
(2)若直線與底面ABC成的角為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com