【題目】平行四邊形中,,沿將折起,使二面角是大小為銳角的二面角,設在平面上的射影為.
(1)當為何值時,三棱錐的體積最大?最大值為多少?
(2)當時,求的大。
【答案】(1) 當時,三棱錐的體積最大,最大值為;(2).
【解析】
(1)由題意可得BD⊥OD,可得,OC⊥平面ABDO,利用三棱錐的體積計算公式和正弦函數(shù)的單調(diào)性即可得出;
(2)建立如圖所示的空間直角坐標系,由,即可得出.
(1)由題知OD為CD在平面ABD上的射影,CO⊥平面ABD,
,∵平面,
∴BD⊥OD,二面角的平面角
∴,則.
∴
當且僅當,即時取等號,
∴當時,三棱錐的體積最大,最大值為.
(2)過O作OE⊥AB于E,則OEBD為矩形,
以O為原點,OE,OD,OC所在直線分別為x軸、y軸、z軸,
建立如圖所示的空間直角坐標系,則
由,得,
∴,
得,又為銳角,∴.
科目:高中數(shù)學 來源: 題型:
【題目】在空間中,下列命題正確的是
A.如果一個角的兩邊和另一角的兩邊分別平行,那么這兩個角相等
B.兩條異面直線所成的有的范圍是
C.如果兩個平行平面同時與第三個平面相交,那么它們的交線平行
D.如果一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號為7,2008年年份代號為8,依次類推.經(jīng)連續(xù)統(tǒng)計9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合與的關(guān)系):
年份代號() | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當年收入(千萬元) | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)試預測2020年該企業(yè)的收入.
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中, , . ,且平面, ,點為上任意一點.
(1)求證: ;
(2)點在線段上運動(包括兩端點),若平面與平面所成的銳二面角為60°,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試.現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在到之間,將測試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為().
(1)若直線l在兩坐標軸上的截距相等,求直線l的方程;
(2)若直線l與x正半軸、射線()分別交于P,Q兩點,當a為何值時,的面積最小?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱 中,D為A1B1的中點,AB=BC=2,,,則異面直線BD與AC所成的角為( 。
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com