【題目】如圖,三棱柱中,平面平面, 是的中點(diǎn).
(1)求證: 平面;
(2)若, , , ,求三棱錐的體積.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)連接AB1,交A1B于點(diǎn)O,連接DO,根據(jù)線面平行的判定定理即可證明B1C∥平面A1BD;(2)若∠A1AB=∠ACB=60°,AB=BB1,AC=2,BC=1,分別求出三棱錐的底面積和高的大小,根據(jù)三棱錐的體積公式即可求三棱錐A1﹣ABD的體積.
解析:
解法一:(Ⅰ)連結(jié)交于點(diǎn),則為的中點(diǎn),
∵是的中點(diǎn),
∴.
又, ,
∴
(Ⅱ)∵, , ,
∴,
∴.
取中點(diǎn),連結(jié),
∵, ,
∴為等邊三角形,
∴,且,
又∵平面,平面,
,
∴,
∵,
∴SC1-ABD=.
解法二:(Ⅰ)取中點(diǎn),連結(jié), , ,
∵, , ,
∴,
∴四邊形為平行四邊形,
∴,
又, ,
∴.
∵,
∴四邊形為平行四邊形,
∴,
又, ,
∴.
又,
∴平面.
又平面,
∴平面
(Ⅱ)∵,
∴,
∴.
∴,
∴.
又∵平面平面,平面 平面.
∴.
∵,
∴,
∴.
∵是中點(diǎn),
∴SC1-ABD=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)若函數(shù)在處的切線垂直于軸,求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;
(3)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若函數(shù)的圖像上有與軸平行的切線,求參數(shù)的取值范圍;
(2)若函數(shù)在處取得極值,且時(shí),恒成立,求參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,若方程有2個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是_____(結(jié)果用區(qū)間表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對(duì)該公司2019年連續(xù)六個(gè)月(5-10)月)的利潤進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示.
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并據(jù)此預(yù)測(cè)該公司2020年5月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不同,現(xiàn)對(duì)兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各100件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)表(表).若從產(chǎn)品使用壽命的角度考慮,甲公司的負(fù)責(zé)人選擇采購哪款新型材料更好?
使用壽命 | 1個(gè)月 | 2個(gè)月 | 3個(gè)月 | 4個(gè)月 | 總計(jì) |
材料類型 | |||||
20 | 35 | 35 | 10 | 100 | |
10 | 30 | 40 | 20 | 100 |
參考數(shù)據(jù):,.
參考公式:回歸直線方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形中,,沿將折起,使二面角是大小為銳角的二面角,設(shè)在平面上的射影為.
(1)當(dāng)為何值時(shí),三棱錐的體積最大?最大值為多少?
(2)當(dāng)時(shí),求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司計(jì)劃在2010年向某企業(yè)投入800萬元用于開發(fā)新產(chǎn)品,并在今后若干年內(nèi),每年的投入資金都比上一年減少20%.估計(jì)2010年可獲得投資回報(bào)收入400萬元,由于該項(xiàng)投資前景廣闊,預(yù)計(jì)今后的投資回報(bào)收入每年都會(huì)比上一年增加25%.
(Ⅰ)設(shè)第年(2010年為第一年)的投入資金為萬元,投資回報(bào)收入為萬元,求和的表達(dá)式;
(Ⅱ)從哪一年開始,該投資公司前幾年的投資回報(bào)總收入將超過總投入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,底面ABC.M,N分別為PB,PC的中點(diǎn).
(1)求證:平面ABC;
(2)求證:平面平面PAC;
(3)若,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com