已知函數(shù).
(1)求函數(shù)的定義域,并判斷的奇偶性;
(2)用定義證明函數(shù)上是增函數(shù);
(3)如果當時,函數(shù)的值域是,求的值.

.解:(1) ,函數(shù)是奇函數(shù).
(2)設、算、證、結
(3),

解析試題分析:
思路分析:(1)由,求得 
計算知函數(shù)是奇函數(shù).
另證:對任意0,
(2)利用“定義”“設、算、證、結”。
(3)根據(jù)的值域是,
得到a的方程解得舍去)
得到,
解:(1)令,解得, 
對任意
所以函數(shù)是奇函數(shù).
另證:對任意,
所以函數(shù)是奇函數(shù).
(2)設
                                                              


   ∵  ∴
,∴
所以函數(shù)上是增函數(shù).
(3)由(2)知,函數(shù)上是增函數(shù),
又因為時,的值域是,
所以的值域是,
(結合圖像易得
解得舍去)
所以
考點:對數(shù)函數(shù)的性質(zhì),函數(shù)的奇偶性、單調(diào)性。
點評:中檔題,本題主要考查對數(shù)函數(shù)的性質(zhì),利用函數(shù)的奇偶性、單調(diào)性定義,判斷函數(shù)的奇偶性,證明函數(shù)的單調(diào)性,屬于基礎題目。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù).若的定義域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求出所有的函數(shù)使得對于所有,都能被整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)和點,過點作曲線的兩條切線、,切點分別為、
(Ⅰ)設,試求函數(shù)的表達式;
(Ⅱ)是否存在,使得、三點共線.若存在,求出的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù),在區(qū)間內(nèi)總存在個實數(shù),,使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了降低能源損耗,某城市對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關系:,若不建隔熱層,每年能源消耗費用為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

隨著機構改革工作的深入進行,各單位要減員增效。有一家公司現(xiàn)有職員人,(,且為偶數(shù)),每人每年可創(chuàng)利萬元。據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年可多創(chuàng)利萬元,但公司需支付下崗職員每人每年萬元的生活費,并且該公司正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有員工的,為獲得最大的經(jīng)濟效益,該公司應裁員多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)f(x)滿足條件f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù),且上單調(diào)遞增.
(1)求實數(shù)的值,并寫出相應的函數(shù)的解析式;
(2)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)試判斷是否存在正數(shù),使函數(shù)在區(qū)間上的值域為若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案