【題目】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:

連續(xù)劇播放時長(分鐘)

廣告播放時長(分鐘)

收視人次(萬)

70

5

60

60

5

25

已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).(13分)
(I)用x,y列出滿足題目條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?

【答案】(Ⅰ)解:由已知,x,y滿足的數(shù)學關系式為 ,即
該二元一次不等式組所表示的平面區(qū)域如圖:

(Ⅱ)解:設總收視人次為z萬,則目標函數(shù)為z=60x+25y.
考慮z=60x+25y,將它變形為 ,這是斜率為 ,隨z變化的一族平行直線.
為直線在y軸上的截距,當 取得最大值時,z的值最大.
又∵x,y滿足約束條件,
∴由圖可知,當直線z=60x+25y經過可行域上的點M時,截距 最大,即z最大.
解方程組 ,得點M的坐標為(6,3).
∴電視臺每周播出甲連續(xù)劇6次、乙連續(xù)劇3次時才能使總收視人次最多.
【解析】(Ⅰ)直接由題意結合圖表列關于x,y所滿足得不等式組,化簡后即可畫出二元一次不等式所表示的平面區(qū)域;
(Ⅱ)寫出總收視人次z=60x+25y.化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
【考點精析】本題主要考查了二元一次不等式(組)所表示的平面區(qū)域的相關知識點,需要掌握不等式組表示的平面區(qū)域是各個不等式所表示的平面區(qū)域的公共部才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】冶煉某種金屬可以用舊設備和改造后的新設備,為了檢驗用這兩種設備生產的產品中所含雜質的關系,調查結果如下表所示:

分類

雜質高

雜質低

舊設備

37

121

新設備

22

202

根據(jù)以上數(shù)據(jù),則(  )

A. 含雜質的高低與設備改造有關

B. 含雜質的高低與設備改造無關

C. 設備是否改造決定含雜質的高低

D. 以上答案都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,⊙O過平行四邊形ABCT的三個頂點B,C,T,且與AT相切,交AB的延長線于點D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點,且DE=DF,求∠A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)若直線l與曲線C有唯一的公共點,求角α的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)在R上是增函數(shù).若a=﹣f( ),b=f(log24.1),c=f(20.8),則a,b,c的大小關系為( 。
A.a<b<c
B.b<a<c
C.c<b<a
D.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A、B兩個投資項目的利潤率分別為隨機變量X1X2,根據(jù)市場分析,X1X2的分布列分別為

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)A,B兩個項目上各投資100萬元,Y1Y2分別表示投資項目AB所獲得的利潤,求方差V(Y1)V(Y2)

(2)x(0≤x≤100)萬元投資A項目,100x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產品有4件正品和2件次品混在了一起,現(xiàn)要把這2件次品找出來,為此每次隨機抽取1件進行測試,測試后不放回,直至次品全部被找出為止.

(1)1次和第2次都抽到次品的概率;

(2)設所要測試的次數(shù)為隨機變量X,X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F(x)=x(-1,+∞).

(1)F(x)的單調區(qū)間;

(2)求函數(shù)F(x)[1,5]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax+b(a>0,b>0)有兩個不同的零點m,n,且m,n和﹣2三個數(shù)適當排序后,即可成為等差數(shù)列,也可成為等比數(shù)列,則a+b的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習冊答案