設(shè)函數(shù)f(x)=(x-2)2+blnx,其中b為常數(shù).
(Ⅰ)若函數(shù)f(x)在定義域上單調(diào)遞增,求b的取值范圍;
(Ⅱ)若b≤0,求函數(shù)f(x)的極值點(diǎn);
(Ⅲ)當(dāng)b=-6時(shí),利用函數(shù)f(x)的性質(zhì)證明:對(duì)任意大于1的正整數(shù)n,不等式恒成立.
【答案】分析:(1)先由負(fù)數(shù)沒(méi)有對(duì)數(shù)得到f(x)的定義域,求出f(x)的導(dǎo)函數(shù),根據(jù)b大于 2得到導(dǎo)函數(shù)大于0,所以函數(shù)在定義域內(nèi)單調(diào)遞增;
(2)令f(x)的導(dǎo)函數(shù)等于0,求出此時(shí)方程的解即可得到x的值,根據(jù)d小于等于0舍去不在定義域范圍中的解,得到符合定義域的解,然后利用這個(gè)解把(0,+∞)分成兩段,討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)f(x)的增減性,根據(jù)f(x)的增減性即可得到函數(shù)的唯一極小值為這個(gè)解;
(3)由b=-6,代入f(x)的解析式中確定出f(x),并根據(jù)(2)把b的值代入求出的唯一極小值中求出值為 3,得到函數(shù)的遞減區(qū)間為(0,3),根據(jù)當(dāng)n>1時(shí),,利用函數(shù)為減函數(shù)恒有 ,化簡(jiǎn)得證.
解答:解:(1)由題意知,f(x)的定義域?yàn)椋?,+∞),
∴當(dāng) b>2時(shí),f′(x)>0,函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增;
(2)令 ,
,
當(dāng)b≤0時(shí),∉(0,+∞)(舍去),
∈(0,+∞),
此時(shí):f′(x),f(x)隨x在定義域上的變化情況如下表:
由此表可知:∵b≤0時(shí),f(x)有惟一極小值點(diǎn) ;
(3)由(2)可知當(dāng)b=-6時(shí),函數(shù)f(x)=(x-2)2-6lnx,此時(shí)f(x)有惟一極小值點(diǎn):x=3,
且 x∈(0,3)時(shí),f′(x)<0,f(x)在(0,3)為減函數(shù).
∵當(dāng)n>1時(shí),,
∴恒有 ,
∴當(dāng)n>1時(shí),恒有不等式成立.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,并根據(jù)函數(shù)的單調(diào)性得到函數(shù)的極值,掌握導(dǎo)數(shù)在最值問(wèn)題中的應(yīng)用,是一道綜合題.學(xué)生做題時(shí)應(yīng)注意找出函數(shù)的定義域.第三問(wèn)的突破點(diǎn)是令b=-6,然后利用增減性進(jìn)行證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案