下列映射中的一一映射是(    )

.,+1

.N{-1,1},-1

.,

.{1},

答案:A
提示:

利用映射及一一映射的概念


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列集合A到集合B的對應中,判斷哪些是A到B的映射?判斷哪些是A到B的一一映射?
(1)A=N,B=Z,對應法則f:x→y=-x,x∈A,y∈B.
(2)A=R+,B=R+,f:x→y=
1x
,x∈A,y∈B.
(3)A=a|0°<α≤9°,B=x|0≤x≤1,對應法則f:取正弦.
(4)A=N+,B={0,1},對應法則f:除以2得的余數(shù).
(5)A={-4,-1,1,4},B={-2,-1,1,2},對應法則f:x→y=|x|2,x∈A,y∈B.
(6)A={平面內邊長不同的等邊三角形},B={平面內半徑不同的圓},對應法則f:作等邊三角形的內切圓.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

下列映射中的一一映射是(    )

.,+1

.N{-1,1},-1

.

.{1},

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下列集合A到集合B的對應中,判斷哪些是A到B的映射?判斷哪些是A到B的一一映射?
(1)A=N,B=Z,對應法則f:x→y=-x,x∈A,y∈B.
(2)A=R+,B=R+,數(shù)學公式,x∈A,y∈B.
(3)A=a|0°<α≤9°,B=x|0≤x≤1,對應法則f:取正弦.
(4)A=N+,B={0,1},對應法則f:除以2得的余數(shù).
(5)A={-4,-1,1,4},B={-2,-1,1,2},對應法則f:x→y=|x|2,x∈A,y∈B.
(6)A={平面內邊長不同的等邊三角形},B={平面內半徑不同的圓},對應法則f:作等邊三角形的內切圓.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省高考數(shù)學預測試卷(04)(解析版) 題型:填空題

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標系平面內所有點形成的集合,B是復數(shù)集,則A和B 不具有相同的勢;
③若A={},其中是不共線向量,B={|,共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢.
其中真命題為   

查看答案和解析>>

同步練習冊答案