下列映射中的一一映射是(    )

.+1

.N{-1,1},-1

.,

.{1},

答案:A
提示:

利用映射及一一映射的概念


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列集合A到集合B的對(duì)應(yīng)中,判斷哪些是A到B的映射?判斷哪些是A到B的一一映射?
(1)A=N,B=Z,對(duì)應(yīng)法則f:x→y=-x,x∈A,y∈B.
(2)A=R+,B=R+f:x→y=
1x
,x∈A,y∈B.
(3)A=a|0°<α≤9°,B=x|0≤x≤1,對(duì)應(yīng)法則f:取正弦.
(4)A=N+,B={0,1},對(duì)應(yīng)法則f:除以2得的余數(shù).
(5)A={-4,-1,1,4},B={-2,-1,1,2},對(duì)應(yīng)法則f:x→y=|x|2,x∈A,y∈B.
(6)A={平面內(nèi)邊長(zhǎng)不同的等邊三角形},B={平面內(nèi)半徑不同的圓},對(duì)應(yīng)法則f:作等邊三角形的內(nèi)切圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

下列映射中的一一映射是(    )

.,+1

.N{-1,1},-1

.,

.{1},

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下列集合A到集合B的對(duì)應(yīng)中,判斷哪些是A到B的映射?判斷哪些是A到B的一一映射?
(1)A=N,B=Z,對(duì)應(yīng)法則f:x→y=-x,x∈A,y∈B.
(2)A=R+,B=R+,數(shù)學(xué)公式,x∈A,y∈B.
(3)A=a|0°<α≤9°,B=x|0≤x≤1,對(duì)應(yīng)法則f:取正弦.
(4)A=N+,B={0,1},對(duì)應(yīng)法則f:除以2得的余數(shù).
(5)A={-4,-1,1,4},B={-2,-1,1,2},對(duì)應(yīng)法則f:x→y=|x|2,x∈A,y∈B.
(6)A={平面內(nèi)邊長(zhǎng)不同的等邊三角形},B={平面內(nèi)半徑不同的圓},對(duì)應(yīng)法則f:作等邊三角形的內(nèi)切圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省高考數(shù)學(xué)預(yù)測(cè)試卷(04)(解析版) 題型:填空題

定義:對(duì)于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個(gè)元素都有原象,則稱f:A→B為一一映射.如果存在對(duì)應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的勢(shì).給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢(shì);
②A是直角坐標(biāo)系平面內(nèi)所有點(diǎn)形成的集合,B是復(fù)數(shù)集,則A和B 不具有相同的勢(shì);
③若A={},其中,是不共線向量,B={|,共面的任意向量},則A和B不可能具有相同的勢(shì);
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢(shì).
其中真命題為   

查看答案和解析>>

同步練習(xí)冊(cè)答案