【題目】已知橢圓的中心在原點,左焦點、右焦點都在軸上,點是橢圓上的動點,的面積的最大值為,在軸上方使成立的點只有一個.
(1)求橢圓的方程;
(2)過點的兩直線,分別與橢圓交于點,和點,,且,比較與的大。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),的導函數(shù)為.
(1)試討論函數(shù)的零點個數(shù);
(2)若對任意的,關于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規(guī)劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關系,經過調查得到如下數(shù)據:
間隔時間(分鐘) | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)(人) | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這6組數(shù)據中選取4組數(shù)據求線性回歸方程,再用剩下的2組數(shù)據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求方程是“恰當回歸方程”.
(1)若選取的是后面4組數(shù)據,求關于的線性回歸方程;
(2)判斷(1)中的方程是否是“恰當回歸方程”;
(3)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設置為多少(精確到整數(shù))分鐘?
附:對于一組數(shù)據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為: ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若,函數(shù)的極大值為,求實數(shù)的值;
(2)若對任意的, ,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形中,,,,為的中點,如圖將沿折到的位置,使,點在上,且,如圖2.
求證:平面;
求二面角的正切值;
在線段上是否存在點,使平面?若存在,確定的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項正確的為( )
A.已知直線:,:,則的充分不必要條件是
B.命題“若數(shù)列為等比數(shù)列,則數(shù)列為等比數(shù)列”是假命題
C.棱長為正方體中,平面與平面距離為
D.已知為拋物線上任意一點且,若恒成立,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.
(1)求的直角坐標方程和的直角坐標;
(2)設與交于,兩點,線段的中點為,求.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com