【題目】已知橢圓的中心在原點,左焦點、右焦點都在軸上,點是橢圓上的動點,的面積的最大值為,在軸上方使成立的點只有一個.

(1)求橢圓的方程;

(2)過點的兩直線,分別與橢圓交于點和點,,且,比較的大。

【答案】(1)(2)

【解析】

1)根據已知設橢圓的方程為,由已知分析得,解得,即得橢圓的方程為.(2)先證明直線的斜率為0或不存在時,.再證明若的斜率存在且不為0時,.

(1)根據已知設橢圓的方程為.

軸上方使成立的點只有一個,

∴在軸上方使成立的點是橢圓的短軸的端點.

當點是短軸的端點時,由已知得,

解得.

∴橢圓的方程為.

(2).

若直線的斜率為0或不存在時,.

.

的斜率存在且不為0時,設,

,,則,,

于是 .

同理可得.

.

.

綜上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量是與向量夾角為的單位向量.

1)求向量

2)若向量與向量共線,且的夾角為鈍角,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù)為.

1)試討論函數(shù)的零點個數(shù);

2)若對任意的,關于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學規(guī)劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關系,經過調查得到如下數(shù)據:

間隔時間(分鐘)

10

11

12

13

14

15

等候人數(shù)(人)

23

25

26

29

28

31

調查小組先從這6組數(shù)據中選取4組數(shù)據求線性回歸方程,再用剩下的2組數(shù)據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求方程是恰當回歸方程”.

1)若選取的是后面4組數(shù)據,求關于的線性回歸方程

2)判斷(1)中的方程是否是恰當回歸方程;

3)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設置為多少(精確到整數(shù))分鐘?

附:對于一組數(shù)據,,,其回歸直線的斜率和截距的最小二乘估計分別為: ,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)若,函數(shù)的極大值為,求實數(shù)的值;

2)若對任意的, ,在上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速()分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形中,,,,的中點,如圖沿折到的位置,使,點上,且,如圖2

求證:平面;

求二面角的正切值;

在線段上是否存在點,使平面?若存在,確定的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項正確的為(

A.已知直線,,則的充分不必要條件是

B.命題若數(shù)列為等比數(shù)列,則數(shù)列為等比數(shù)列是假命題

C.棱長為正方體中,平面與平面距離為

D.已知為拋物線上任意一點且,若恒成立,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.

(1)求的直角坐標方程和的直角坐標;

(2)設交于,兩點,線段的中點為,求.

查看答案和解析>>

同步練習冊答案