非空集合G關(guān)于運(yùn)算⊕滿足:
(1)對(duì)任意a、b∈G,都有a⊕b∈G;
(2)存在c∈G,使得對(duì)一切a∈G,都有a⊕c=c⊕a=a,則稱G關(guān)于運(yùn)算⊕為“融洽集”,現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
②G={偶數(shù)},⊕為整數(shù)的乘法.
③G={平面向量},⊕為平面向量的加法.
其中G關(guān)于運(yùn)算⊕為“融洽集”的是
 
(寫出所有“融洽集”的序號(hào))
考點(diǎn):進(jìn)行簡(jiǎn)單的合情推理
專題:綜合題,推理和證明
分析:本題給出了新定義“融洽集”,判斷給出的數(shù)集是否是“融洽集”,就要驗(yàn)證所給的數(shù)集是否滿足“融洽集”,若其中有一個(gè)條件不滿足,就不是“融洽集”.
解答: 解:①對(duì)于任意非負(fù)整數(shù)a,b知道:a+b仍為非負(fù)整數(shù),∴a⊕b∈G;取c=0,及任意飛負(fù)整數(shù)a,則a+0=0+a=a,因此G對(duì)于⊕為整數(shù)的加法運(yùn)算來(lái)說(shuō)是“融洽集”;
②對(duì)于任意偶數(shù)a,b知道:ab仍為偶數(shù),故有a⊕b∈G;但是不存在c∈G,使對(duì)一切a∈G都有a⊕c=c⊕a=a,故②的G不是“融洽集”.
③當(dāng)a,b 都為平面向量時(shí),兩平面向量相加任然為平面向量,且存在零向量通過(guò)向量加法滿足條件(2),故G是“融洽集”;
故答案為:①③.
點(diǎn)評(píng):本題考查了對(duì)新定義“融洽集”理解能力,及對(duì)有關(guān)知識(shí)的掌握情況.關(guān)鍵是看所給的數(shù)集是否滿足“融洽集”的兩個(gè)條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=(3m-2)+(m-1)i,m∈R.
(1)m為何值時(shí),z是純虛數(shù)?
(2)若(
x
+
3
x
m(m∈N*)的展開(kāi)式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)和之比為64,求n的值并指出此時(shí)復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第幾象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2-2x+1,0≤x≤t(t>0),求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某臺(tái)小型晚會(huì)由6個(gè)節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在第四位、節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,該臺(tái)晚會(huì)節(jié)目演出順序的編排方案共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若m是2和8的等比中項(xiàng),且2m<1,則拋物線y2=mx的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ξ~N(4,σ2),且P(2<ξ<6)=0.7,則P(ξ<2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足(x-2)2+y2=3,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=log
1
2
(-x2+6x-5)的單調(diào)增區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)拋物線y2=8x的焦點(diǎn)作一條傾角為
π
4
的直線,交拋物線于A、B兩點(diǎn),弦AB長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案