某校高一新生1000人中,來自A,B,C,D,E五個(gè)不同的初中校,現(xiàn)從中隨機(jī)抽取20人,對其所在初中校進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
初中校 A B C D E
頻率 0.05 m 0.15 0.35 n
(Ⅰ)在抽取的20個(gè)同學(xué)中,來自E學(xué)校的為2人,求m,n的值;
(Ⅱ)在(Ⅰ)的條件下,從來自C和E兩學(xué)校的同學(xué)中任取2人,求抽取的2個(gè)人來自不同學(xué)校的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,等可能事件的概率
專題:概率與統(tǒng)計(jì)
分析:(I)根據(jù)各組數(shù)據(jù)的累積頻率為1,及頻率=
頻數(shù)
樣本容量
,可構(gòu)造關(guān)于m,n的方程,解方程可得m,n的值;
(II)先計(jì)算從來自C和E兩學(xué)校的同學(xué)中任取2人的基本事件總數(shù)及抽取的2個(gè)人來自不同學(xué)校的基本事件個(gè)數(shù),代入古典概型概率計(jì)算公式,可得答案.
解答: 解:(I)由頻率分布表得:0.05+m+.015+.035+n=1,
∴m+n=0.45----------------(2分)
由抽取的20人中,來自E學(xué)校恰有2個(gè)人,則n=
2
20
=0.1,
∴m=0.45-0.1=0.35-------------(5分)
(II)由(1)得來自C學(xué)校有3人,記作a,b,c,來自E學(xué)校的有2個(gè),記作A,B,
從C和E兩學(xué)校的同學(xué)中任取2人,有:
(a,b),(a,c),(a,A),(a,B),(b,c),
(b,A),(b,B),(a,A),(c,B),(A,B),共10種------------------------------(8分)
記事件A為“從來自C和E兩學(xué)校的同學(xué)中任取2個(gè)人,來自不同學(xué)!,則A包含的基本事件是
(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),共6個(gè)------------(10分)
所求概率P(A)=
6
10
=
3
5
,
即抽取的2個(gè)人來自不同學(xué)校的概率為
3
5
-------------------------------------(12分)
點(diǎn)評:本題考查的知識點(diǎn)是古典概型概率計(jì)算公式,其中熟練掌握利用古典概型概率計(jì)算公式求概率的步驟,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足條件
y≥x
x+y≥0
y≤1
,則x-2y的最小值是( 。
A、-3B、-2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個(gè)人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚撼煽兎譃閮?yōu)秀、良好、及格三個(gè)等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格

地理
優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列,且滿足a2+a3=a4,a11=a3+a4,記bn=a2n-1(n∈N*
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
bn2+bn+1
bn2+bn
}的前2014項(xiàng)和為T2014,求不超過T2014的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象.
(1)求f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)求函數(shù)g(x)=
f(x)+2
f(x+
π
4
)+2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,過點(diǎn)M(2,0)的直線l與極軸的夾角α=
π
3

(Ⅰ)將l的極坐標(biāo)方程寫成ρ=f(θ)的形式
(Ⅱ)在極坐標(biāo)系中,以極點(diǎn)為坐標(biāo)原點(diǎn),以極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系.若曲線C2
x=3sinθ
y=acosθ
(θ為參數(shù),a∈R)與l有一個(gè)公共點(diǎn)在Y軸上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+b,
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=x+1,求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)單調(diào)遞減.
(1)求a的取值集合A; 
(2)對任意a∈A∩[-7,+∞)和x∈[0,4],有f(x)>a2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,an-an-1-2n=0,(n≥2,n∈N).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx+
3
cosx+2cos2x+
3
sin2x的值域?yàn)?div id="jy9v9wo" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊答案