已知定義域?yàn)閇0,1]的函數(shù)f(x)是增函數(shù),且f(1)=1.若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)在[0,1]上是增函數(shù),故1-f(x)≥0,討論當(dāng)f(x)=1時,當(dāng)f(x)<1時,運(yùn)用參數(shù)分離,求出右邊的最小值,結(jié)合基本不等式即可得到.
解答: 解:f(x)在[0,1]上是增函數(shù),
則f(x)≤f(1)=1,故1-f(x)≥0,
當(dāng)f(x)=1時,不等式化為0•a+1≥0,顯然a∈R;
當(dāng)f(x)<1時,不等式化為a≤
4f2(x)-8f(x)+5
4-4f(x)
對于x∈[0,1]恒成立.
設(shè)y=
4f2(x)-8f(x)+5
4-4f(x)
=1-f(x)+
1
4[1-f(x)]
≥1
當(dāng)且僅當(dāng)f(x)=
1
2
取等號,
∴ymin=1(10分)從而a≤1,
綜上所述,a∈(-∞,1].
點(diǎn)評:本題考查函數(shù)的單調(diào)性及運(yùn)用,考查不等式恒成立問題轉(zhuǎn)化為求最值問題,考查運(yùn)算能力,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

符合下列條件的三角形有且只有一個的是( 。
A、a=1,b=2,c=3
B、a=1,b=2,∠A=100°
C、a=1,b=
2
,∠A=30°
D、b=c=1,∠B=45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=-4+4t
y=m-2t
(為參數(shù)).
(Ⅰ)若直線l與圓C相切,求m的值;
(Ⅱ)若m=-1,求圓C上的點(diǎn)到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=
1-x2
與直線kx-y+1=3k有交點(diǎn),則k的取值范圍是( 。
A、[0,
1
2
]
B、(-∞,0)∪[
1
2
,+∞)
C、(0,
1
2
D、(-∞,0))∪(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

城市公交車的數(shù)量若太多則容易造成資的浪費(fèi);若太少又難以滿足乘客需求.南充市公交公司在某站臺的60名候車乘客中隨機(jī)抽取15人,將他們的候車時間作為樣本分成5組,如下表所示(單位:分鐘):)
組別候車時間人數(shù)
[0,5)2
[5,10)6
[10,15)4
[15,20)2
[20,25]1
(1)估計(jì)這60名乘客中候車時間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中任選2人作進(jìn)一步的調(diào)查,求抽到的兩人恰好自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=2x-2-x+2,則f(2)等于(  )
A、2
B、
15
4
C、4
D、
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2-x的反函數(shù)的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx+acosx的圖象關(guān)于直線x=
π
6
對稱,且方程f(x)=m在[0,
π
2
)上恰有兩個不同的實(shí)數(shù)根,則實(shí)數(shù)m取值范圍是( 。
A、[0,1]
B、[1,2]
C、[
3
,2)
D、[1,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2>3x-2的解集為{x|x<1或x>b}.
(1)求a,b;
(2)解不等式acx2-(ac+b)x+b<0.

查看答案和解析>>

同步練習(xí)冊答案