【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數量與日俱增.由于該小區(qū)建成時間較早,沒有配套建造地下停車場,小區(qū)內無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計了近五年小區(qū)登記在冊的私家車數量(累計值,如147表示2016年小區(qū)登記在冊的所有車輛數,其余意義相同),得到如下數據:
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數量(單位:輛) | 37 | 104 | 147 | 196 | 216 |
(1)若私家車的數量與年份編號滿足線性相關關系,求關于的線性回歸方程,并預測2020年該小區(qū)的私家車數量;
(2)小區(qū)于2018年底完成了基礎設施改造,劃設了120個停車位.為解決小區(qū)車輛亂停亂放的問題,加強小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進入小區(qū).由于車位有限,物業(yè)公司決定在2019年度采用網絡競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:①截至2018年己登記在冊的私家車業(yè)主擁有競拍資格;②每車至多中請一個車位,由車主在競拍網站上提出申請并給出自己的報價;③根據物價部門的規(guī)定,競價不得超過1200元;④申請階段截止后,將所有申請的業(yè)主報價自高到低排列,排在前120位的業(yè)主以其報價成交;⑤若最后出現并列的報價,則以提出申請的時間在前的業(yè)主成交,為預測本次競拍的成交最低價,物業(yè)公司隨機抽取了有競拍資格的40位業(yè)主,進行了競拍意向的調查,并對他們的擬報競價進行了統(tǒng)計,得到如圖頻率分布直方圖:
(i)求所抽取的業(yè)主中有意向競拍報價不低于1000元的人數;
(ii)如果所有符合條件的車主均參與競拍,利用樣本估計總體的思想,請你據此預測至少需要報價多少元才能競拍車位成功?(精確到整數)
參考公式及數據:對于一組數據,其回歸方程的斜率和截距的最小二乘估計分別為:;.
【答案】(1),320;(2)(i)12人;(ii)936.
【解析】
(1)由表中數據,計算得與的值,則線性回歸方程可求,取x=7求得y值得答案;
(2)(i)由頻率直方圖求得有意競拍報價不低于1000元的頻率,乘以40得答案.
(ii)由題意,.由頻率直方圖估算知,報價應該在900-1000之間,設報價為x百元,可得.求解x值即可.
(1)由表中數據,計算得,,,.
故所求線性回歸方程為,
令x=7,得;
(2)(i)由頻率直方圖可知,有意競拍報價不低于1000元的頻率為:
(0.25+0.05)×1=0.3,
共抽取40位業(yè)主,則40×0.3=12,
∴有意競拍不低于1000元的人數為12人.
(ii)由題意,.
由頻率直方圖估算知,報價應該在900-1000之間,
設報價為x百元,
則.
解得x≈9.36.
∴至少需要報價936元才能競拍成功.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為 (為參數),曲線的參數方為 (為參數),以為極點, 軸的非負半軸為極軸建立極坐標系.
(1)求直線和曲線的極坐標方程;
(2)設,,為直線與曲線的兩個交點,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的一個頂點與拋物線的焦點重合,,分別是橢圓的左、右焦點,離心率,過橢圓右焦點的直線與橢圓交于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;
(Ⅲ)設點是一個動點,若直線的斜率存在,且為中點,,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統(tǒng)計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.
根據該走勢圖,下列結論正確的是( )
A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱
C. 從網民對該關鍵詞的搜索指數來看,去年10月份的方差小于11月份的方差
D. 從網民對該關鍵詞的搜索指數來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線的焦點為F,過點F的直線交拋物線于A,B兩點.
(1)若,求直線AB的斜率;
(2)設點M在線段AB上運動,原點O關于點M的對稱點為C,求四邊形OACB面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某商場隨機抽取了2000件商品,按商品價格(元)進行統(tǒng)計,所得頻率分布直方圖如圖所示.記價格在,,對應的小矩形的面積分別為,且.
(1)按分層抽樣從價格在,的商品中共抽取6件,再從這6件中隨機抽取2件作價格對比,求抽到的兩件商品價格差超過800元的概率;
(2)在清明節(jié)期間,該商場制定了兩種不同的促銷方案:
方案一:全場商品打八折;
方案二:全場商品優(yōu)惠如下表,如果你是消費者,你會選擇哪種方案?為什么?(同一組中的數據用該組區(qū)間中點值作代表)
商品價格 | ||||||
優(yōu)惠(元) | 30 | 50 | 140 | 160 | 280 | 320 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com