【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為.

(I)求曲線在點(diǎn)處的切線方程;

(II)求函數(shù)的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

【答案】(I);(II)增區(qū)間是, ,減區(qū)間是;(III)最大值為,最小值為.

【解析】試題分析:(I)求出,由解得,根據(jù)導(dǎo)數(shù)的幾何意義可得切線斜率,利用點(diǎn)斜式可得切線方程;(II)求出, 得增區(qū)間, 得減區(qū)間;(III)根據(jù)(II)求出函數(shù)的極值,與區(qū)間端點(diǎn)出的函數(shù)值進(jìn)行比較即可得結(jié)果.

試題解析:(I).

,解得

從而

所以

曲線在點(diǎn)處的切線方程為

.

(II)由于,當(dāng)變化時(shí), 的變化情況如下表:

0

0

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

的單調(diào)增區(qū)間是, ,單調(diào)減區(qū)間是.

(III)由于

故函數(shù)在區(qū)間上的最大值為,最小值為.

【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的最值、導(dǎo)數(shù)的幾何意義,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)最值的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)的極值及最值(閉區(qū)間上還要注意比較端點(diǎn)處函數(shù)值的大小).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中既是奇函數(shù)又在區(qū)間[﹣1,1]上單調(diào)遞減的是(
A.y=sinx
B.a<b
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=( 2(x>1)
(1)求f(x)的反函數(shù)及其定義域;
(2)若不等式(1﹣ )f1(x)>a(a﹣ )對(duì)區(qū)間x∈[ ]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圓的一條直徑的兩個(gè)端點(diǎn)分別是(﹣1,3)和(5,﹣5),則此圓的方程是(
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上一點(diǎn), 分別為的左、右焦點(diǎn), , , 的面積為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn),記直線的斜率分別為,當(dāng)最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若有三個(gè)極值點(diǎn),求的取值范圍;

(2)若對(duì)任意都恒成立的的最大值為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在處的切線過(guò)點(diǎn), .

(1)若,求函數(shù)的極值點(diǎn);

(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +log2017(2﹣x)的定義域?yàn)椋?/span>
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案