【題目】設(shè)橢圓的一個頂點(diǎn)與拋物線的焦點(diǎn)重合,,分別是橢圓的左、右焦點(diǎn),離心率,過橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;

(Ⅲ)設(shè)點(diǎn)是一個動點(diǎn),若直線的斜率存在,且中點(diǎn),,求實(shí)數(shù)的取值范圍.

【答案】()()答案見解析;().

【解析】

()由題意求得a,b,c的值即可確定橢圓方程;

()聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理和向量的坐標(biāo)運(yùn)算法則求得直線的斜率即可確定直線方程;

()由題意結(jié)合點(diǎn)差法得到的表達(dá)式,結(jié)合其表達(dá)式求解取值范圍即可.

()拋物線的焦點(diǎn)坐標(biāo)為,故,

結(jié)合可得:,故橢圓方程為:.

()很明顯直線的斜率存在,設(shè),

假設(shè)存在滿足題意的直線方程:,

與橢圓方程聯(lián)立可得:,

則:

,

結(jié)合題意和韋達(dá)定理有:

解得:,即存在滿足題意的直線方程:.

()設(shè),設(shè)直線AB的方程為,

由于:,

兩式作差整理變形可得:

即:.

×②可得:

④代入③可得:

④⑤代入①整理可得:,

,據(jù)此可得:,

從而.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C過點(diǎn),離心率為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)F1,F2分別為橢圓C的左、右焦點(diǎn),過F2的直線l與橢圓C交于不同兩點(diǎn)M,N,記F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時(shí)直線l的方程,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點(diǎn)的直線稱為拋物線的切線,這個公共點(diǎn)為切點(diǎn)).

1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;

2)求的面積,證明的面積與、無關(guān),只與有關(guān);

3)小張所在的興趣小組完成上面兩個小題后,小張連、,再作與平行的切線,切點(diǎn)分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是矩形, 平面, ,以的中點(diǎn)為球心, 為直徑的球面交于點(diǎn),交于點(diǎn).

(1)求證:平面平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1

I)求此拋物線的方程;

)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖下列結(jié)論正確的是( )

A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化

B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱

C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題

1)若一條直線與兩條直線都相交,那么這三條直線共面;

2)若三條直線兩兩平行,那么這三條直線共面;

3)若直線與直線異面,直線與直線異面,那么直線與直線異面;

4)若直線與直線垂直,直線與直線垂直,那么直線與直線平行;

其中正確的命題個數(shù)有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時(shí)間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年小區(qū)登記在冊的私家車數(shù)量(累計(jì)值,如147表示2016年小區(qū)登記在冊的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):

編號

1

2

3

4

5

年份

2014

2015

2016

2017

2018

數(shù)量(單位:輛)

37

104

147

196

216

1)若私家車的數(shù)量與年份編號滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2020年該小區(qū)的私家車數(shù)量;

2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個停車位.為解決小區(qū)車輛亂停亂放的問題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進(jìn)入小區(qū).由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:①截至2018年己登記在冊的私家車業(yè)主擁有競拍資格;②每車至多中請一個車位,由車主在競拍網(wǎng)站上提出申請并給出自己的報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,競價(jià)不得超過1200元;④申請階段截止后,將所有申請的業(yè)主報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則以提出申請的時(shí)間在前的業(yè)主成交,為預(yù)測本次競拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競拍資格的40位業(yè)主,進(jìn)行了競拍意向的調(diào)查,并對他們的擬報(bào)競價(jià)進(jìn)行了統(tǒng)計(jì),得到如圖頻率分布直方圖:

i)求所抽取的業(yè)主中有意向競拍報(bào)價(jià)不低于1000元的人數(shù);

ii)如果所有符合條件的車主均參與競拍,利用樣本估計(jì)總體的思想,請你據(jù)此預(yù)測至少需要報(bào)價(jià)多少元才能競拍車位成功?(精確到整數(shù))

參考公式及數(shù)據(jù):對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計(jì)分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線y=a分別與直線y=2x-3,曲線y=ex-xx≥0)交于點(diǎn)AB,則|AB|的最小值為(  )

A. B. C. eD.

查看答案和解析>>

同步練習(xí)冊答案