分析 先判斷函數(shù)f(x)的奇偶性、單調(diào)性,然后把f(a-3)+f(9-a2)<0轉(zhuǎn)化為關(guān)于自變量的值間的大小關(guān)系,解不等式即可,要注意函數(shù)定義域.
解答 解:因為f(-x)=-(-x)3+(-3x)=x3-x=-f(x),所以f(x)為奇函數(shù),
又f(x)=-x3+3x單調(diào)遞增,
所以f(a-3)+f(9-a2)<0,可化為f(a-3)<-f(9-a2)=f(a2-9),
所以有$\left\{\begin{array}{l}{a-3<{a}^{2}-9}\\{-1<a-3<1}\\{-1<{a}^{2}-9<1}\end{array}\right.$,解得3<a<$\sqrt{10}$
故答案為:(3,$\sqrt{10}$).
點評 本題考查函數(shù)的奇偶性、單調(diào)性以及不等式的求解,解決本題的關(guān)鍵是利用函數(shù)f(x)的性質(zhì)把不等式中的符號“f”去掉,變成關(guān)于自變量值間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6或-2 | B. | -6或2 | C. | 3或-4 | D. | -3或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B=A | B. | A∩B=B | C. | ∁UB=A | D. | B⊆∁UA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com