18.兩等角的一組對(duì)應(yīng)邊平行,則另一組對(duì)應(yīng)邊的位置關(guān)系為平行、相交或異面.

分析 以正方體為截體,列舉另一組對(duì)應(yīng)邊的所有位置關(guān)系,由此能求出結(jié)果.

解答 解:如圖,在正方體ABCD-A1B1C1D1中,
∠BAD=∠B1A1D1=90°,AB∥A1B1,另一組對(duì)應(yīng)邊AD∥A1D1;
∠BAD=∠DD1C1=90°,AB∥C1D1,一組對(duì)應(yīng)邊DD1與AD相交,
∠BAD=∠BB1A1=90°,AB∥A1B1,另一組對(duì)應(yīng)邊AD,BB1異面.
∴兩等角的一組對(duì)應(yīng)邊平行,則另一組對(duì)應(yīng)邊的位置關(guān)系為平行、相交或異面.
故答案為:平行、相交或異面.

點(diǎn)評(píng) 本題考查兩直線位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)命題p:?x∈R,x2<2015,則¬p為( 。
A.?x∈R,x2≥2015B.?x∈R,x2<2015C.?x∈R,x2≥2015D.?x∈R,x2>2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.A={x|-5<x<2},B={x|x=y+1,y∈A},則A∩B={x|-4<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知定義域?yàn)椋?1,1),函數(shù)f(x)=-x3+3x且f(a-3)+f(9-a2)<0,則a的取值范圍是(3,$\sqrt{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸是短軸的兩倍,點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$)在橢圓上,不過(guò)原點(diǎn)的直線l與橢圓相交于A、B兩點(diǎn),設(shè)直線OA、l、OB的斜率分別為k1、k、k2,且k1、k、k2恰好構(gòu)成等比數(shù)列,記△AOB的面積為S.
(1)求橢圓C的方程;
(2)試判斷|OA|2+|OB|2是否為定值?若是,求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由?
(3)求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l垂直于直線3x-4y+10=0,直線l與兩坐標(biāo)軸圍成的三角形的周長(zhǎng)為5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.集合M={(x,y)|x2+y2=1},N={(x,y)|x2+y2=4},集合M與N的關(guān)系是( 。
A.M=NB.M⊆N
C.N⊆MD.M,N不存在包含關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=BC=2,$AD=CD=\sqrt{7}$,$PA=\sqrt{3}$,∠ABC=120°,G為線段PC上的點(diǎn).
(1)若G是PC的中點(diǎn),
①求證:PA∥平面GBD
②求DG與平面APC所成的角的正切值;
(2)若G滿足PC⊥面GBD,求$\frac{PG}{GC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)$f(x)=\frac{{5-x+{4^x}}}{2}-\frac{{|{5-x-{4^x}}|}}{2}$,則f(x)的單調(diào)增區(qū)間為(-∞,1],$f(x)>\sqrt{5}$的解集為(1,5-$\sqrt{5}$)∪(log4$\sqrt{5}$,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案