(2014•廣東模擬)已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+
1
2
an=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3(1-Sn+1)(n∈N*),求適合方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
 的正整數(shù)n的值.
分析:(1)由S n+
1
2
an=1
,得Sn-1+
1
2
an-1=1
(n≥2),兩式相減得an與an-1的遞推式,由遞推式易判斷數(shù)列{an}為等比數(shù)列,從而可求an;
(2)由(1)易求得1-Sn+1,進(jìn)而可求bn,利用裂項(xiàng)相消法可求得
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,從而可把方程變?yōu)殛P(guān)于n的方程,解出即可;
解答:解:(1)由S n+
1
2
an=1
,得Sn-1+
1
2
an-1=1
(n≥2),
兩式相減得,an+
1
2
an
-
1
2
an-1
=0(n≥2),即an=
1
3
an-1
(n≥2),
由S n+
1
2
an=1
S1+
1
2
a1
=1,即
3
2
a1
=1,解得a1=
2
3
,
所以數(shù)列{an}各項(xiàng)均不為0,且是以
2
3
為首項(xiàng)、
1
3
為公比的等比數(shù)列,
所以an=
2
3
×(
1
3
)n-1
=
2
3n
;
(2)由(1)知,Sn+1+
1
2
an+1=1
,即1-Sn+1=
1
2
an+1
=
1
3n+1
,
所以b n=lo
g
(1-Sn+1)
3
=log3
1
3n+1
=-(n+1),
1
bnbn+1
=
1
-(n+1)[-(n+2)]
=
1
n+1
-
1
n+2
,
所以
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2

所以方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
 即
1
2
-
1
n+2
=
25
51
,解得n=100,
故適合方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
 的正整數(shù)n的值為100.
點(diǎn)評(píng):本題考查由數(shù)列遞推公式求通項(xiàng)公式,考查等比數(shù)列及用列項(xiàng)相消法進(jìn)行數(shù)列求和,熟練掌握an與Sn間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•廣東模擬)如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC=
2
BC,求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•廣東模擬)為了更好的開(kāi)展社團(tuán)活動(dòng),豐富同學(xué)們的課余生活,現(xiàn)用分層抽樣的方法從“模擬聯(lián)合國(guó)”,“街舞”,“動(dòng)漫”,“話劇”四個(gè)社團(tuán)中抽取若干人組成校社團(tuán)指導(dǎo)小組,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)
社團(tuán) 相關(guān)人數(shù) 抽取人數(shù)
模擬聯(lián)合國(guó) 24 a
街舞 18 3
動(dòng)漫 b 4
話劇 12 c
(1)求a,b,c的值;
(2)若從“動(dòng)漫”與“話劇”社團(tuán)已抽取的人中選2人擔(dān)任指導(dǎo)小組組長(zhǎng),求這2人分別來(lái)自這兩個(gè)社團(tuán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•廣東模擬)已知x,y滿足約束條件
x-y+5≥0
x+y≥0
x≤3
,則z=2x+4y的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•廣東模擬)已知集合M={0,1,2,3,4},N={-2,0,2},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•廣東模擬)下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案