【題目】已知由n(n∈N*)個正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對于任意不大于SA的正整數(shù)m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時an的最大值.
【答案】(1)a1=1,a2=2;(2)證明見解析;(3)n最小值為11,an的最大值1010
【解析】
(1)考慮元素1,2,結(jié)合新定義SA,可得所求值;
(2)從兩個方面證明,結(jié)合等差數(shù)列的性質(zhì)和求和公式,即可得證;
(3)由于含有n個元素的非空子集個數(shù)有2n﹣1,討論當(dāng)n=10時,n=11時,結(jié)合條件和新定義,推理可得所求.
(1)由條件知1≤SA,必有1∈A,又a1<a2<…<an均為整數(shù),a1=1,
2≤SA,由SA的定義及a1<a2<…<an均為整數(shù),必有2∈A,a2=2;
(2)證明:必要性:由“a1,a2,…,an成等差數(shù)列”及a1=1,a2=2,
得ai=i(i=1,2,…,n)此時A={1,2,3,…,n}滿足題目要求,
從而;
充分性:由條件知a1<a2<…<an,且均為正整數(shù),可得ai≥i(i=1,2,3,…,n),
故,當(dāng)且僅當(dāng)ai=i(i=1,2,3,…,n)時,上式等號成立.
于是當(dāng)時,ai=i(i=1,2,3,…,n),從而a1,a2,…,an成等差數(shù)列.
所以“a1,a2,…,an成等差數(shù)列”的充要條件是“”;
(Ⅲ)由于含有n個元素的非空子集個數(shù)有2n-1,故當(dāng)n=10時,210﹣1=1023,
此時A的非空子集的元素之和最多表示1023個不同的整數(shù)m,不符合要求.
而用11個元素的集合A={1,2,4,8,16,32,64,128,256,512,1024}的非空子集的元素之和
可以表示1,2,3,…,2046,2047共2047個正整數(shù).
因此當(dāng)SA=2020時,n的最小值為11.
記S10=a1+a2+…+a10,則S10+a11=2020并且S10+1≥a11.
事實上若S10+1<a11,2020=S10+a11<2a11,則a11>1010,S10<a11<1010,
所以m=1010時無法用集合A的非空子集的元素之和表示,與題意不符.
于是2020=S10+a11≥2a11﹣1,得,,所以a11≤1010.
當(dāng)a11=1010時,A={1,2,4,8,16,32,64,128,256,499,1010}滿足題意,
所以當(dāng)SA=2020時,n的最小值為11,此時an的最大值1010.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,離心率為,過作直線與橢圓交于,兩點,的周長為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團(tuán)隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內(nèi),否則派下一個人.個人中只要有一人解密正確,則認(rèn)為該團(tuán)隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.
(1)若甲解密成功所需時間的中位數(shù)為,求、的值,并求出甲在分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.
①求該團(tuán)隊挑戰(zhàn)成功的概率;
②該團(tuán)隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團(tuán)隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的檢驗員為了檢測生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了個進(jìn)行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:
如果:尺寸數(shù)據(jù)在內(nèi)的零件為合格品,頻率作為概率.
(1)從產(chǎn)品中隨機(jī)抽取件,合格品的個數(shù)為,求的分布列與期望:
(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進(jìn)方案進(jìn)行試驗,若按方案進(jìn)行試驗后,隨機(jī)抽取件產(chǎn)品,不合格個數(shù)的期望是:若按方案試驗后,抽取件產(chǎn)品,不合格個數(shù)的期望是,你會選擇哪個改進(jìn)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和滿足,數(shù)列滿足.
Ⅰ求數(shù)列和數(shù)列的通項公式;
Ⅱ令,若對于一切的正整數(shù)恒成立,求實數(shù)的取值范圍;
Ⅲ數(shù)列中是否存在,且 使,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年7月27日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進(jìn),并不斷刷新華語電影票房紀(jì)錄.繼8月25日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯誤的是( )
A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增
B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12天
C.在《戰(zhàn)狼2》上映前兩周中,8月5日,8月6日達(dá)到了票房的高峰期
D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中),.
(1)若對定義域內(nèi)的任意實數(shù)x恒成立,求實數(shù)a的取值范圍;
(2)若有兩個極值點,,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為,點為橢圓的左、右頂點,點是橢圓上一點,且直線的傾斜角為,,已知橢圓的離心率為.
(1)求橢圓的方程;
(2)設(shè)為橢圓上異于的兩點,若直線的斜率等于直線斜率的倍,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù),稱n×n的方格表Tn的網(wǎng)格線的交點(共(n+1)2個交點)為格點.現(xiàn)將數(shù)1,2,……,(n+1)2分配給Tn的所有格點,使不同的格點分到不同的數(shù).稱Tn的一個1×1格子S為“好方格”,如果從2S的某個頂點起按逆時針方向讀出的4個頂點上的數(shù)依次遞增(如圖是將數(shù)1,2,…,9分配給T2的格點的一種方式,其中B、C是好方格,而A、D不是好方格)設(shè)Tn中好方格個數(shù)的最大值為f(n).
(1)求f(2)的值;
(2)求f(n)關(guān)于正整數(shù)n的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com