【題目】已知數(shù)列的前項和滿足,數(shù)列滿足

求數(shù)列和數(shù)列的通項公式;

,若對于一切的正整數(shù)恒成立,求實數(shù)的取值范圍;

數(shù)列中是否存在,且 使,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

【答案】,; 不存在,理由見解析.

【解析】

利用已知條件通過,說明數(shù)列是首項為1,公比為2的等比數(shù)列,從而可求出的通項公式,然后求解的通項公式;求出,判斷數(shù)列的單調(diào)性,結(jié)合對于一切的正整數(shù)恒成立,得到求解即可假設(shè)存在,使,,成等差數(shù)列推出說明是與條件矛盾,得到結(jié)論.

根據(jù)題意,數(shù)列滿足

當(dāng)時,.當(dāng)時,,,

所以數(shù)列是首項為1,公比為2的等比數(shù)列

所以,;

又由已知,得

依題意得,

因為,

所以當(dāng)時,取得最大值

因為對于一切的正整數(shù)n恒成立,

所以

解得,

所以實數(shù)x的取值范圍是;

假設(shè)存在,使,,成等差數(shù)列,

,即

兩邊同時除以,得

因為為偶數(shù),為奇數(shù),這與矛盾.

所以不存在,使,,成等差數(shù)列

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若是函數(shù)的一個極值點,求實數(shù)的值;

(2)討論函數(shù)的單調(diào)性.

(3)若對于任意的,當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(2sin x,cos x),=(-sin x,2sin x),函數(shù)fx)=·

1)求fx)的單調(diào)遞增區(qū)間;

2)在△ABC中,a,bc分別是角A,B,C的對邊,且fC)=1,c1ab2,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)證明:直線與曲線相交于兩點,并求兩點之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定一個是點關(guān)于直線的對稱點,是點關(guān)于直線的對稱點,是點關(guān)于直線的對稱點.的充分必要條件使得是一個等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(得分均為整數(shù),滿分100)進(jìn)行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:

(1)求的值;

(2)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點的直線與拋物線相切,設(shè)第一象限的切點為.

(Ⅰ)證明:點軸上的射影為焦點

(Ⅱ)若過點的直線與拋物線相交于兩點,圓是以線段為直徑的圓且過點,求直線與圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】—只螞蟻在三邊長分別為,的三角形內(nèi)自由爬行,某時刻該螞蟻距離三角形的任意一個頂點的距離不超過的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案