某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),經(jīng)驗表明,投資額t(億元)與利潤之間的關(guān)系有公式.今該公司準備將5億元的資金投入到甲、乙兩個項目,問如何分配這筆資金才能使公司獲得的總利潤 最大,最大利潤為多少?
【答案】分析:總利潤是P與Q之和,根據(jù)題意建立總利潤關(guān)于資金為x的函數(shù)關(guān)系,然后根據(jù)關(guān)系式求最大值,利用換元法轉(zhuǎn)換為二次函數(shù)在區(qū)間上的最值問題.
解答:解:設(shè)投入到甲項目的資金為x(億元),則投入到乙項目的資金為5-x(億元),用y表示公司獲得的總利潤,依題意有:(5分)

當t=2時,(億元)
此時(億元)
答:投入甲項目(億元),投入乙項目(億元),才能使總利潤最大,最大利潤是(億元)(12分)
點評:利潤最大的問題,根據(jù)題意列出符號條件的函數(shù)關(guān)系式,選擇合適的方法求最值即可.訓(xùn)練靈活變形轉(zhuǎn)化的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=
1
6
3t
,Q=t.今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達式;
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),經(jīng)驗表明,投資額t(億元)與利潤之間的關(guān)系有公式P=
1
6
3t
,Q=
1
8
t
.今該公司準備將5億元的資金投入到甲、乙兩個項目,問如何分配這筆資金才能使公司獲得的總利潤 最大,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=
1
6
3t
,Q=
1
8
t.今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達式;
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=
a
4
2t
,Q=
1
8
t,其中0<a<4,今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).
(1)求y關(guān)于x的函數(shù)解析式:
(2)怎樣投資才能使總利潤的最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式.今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).

求:(1)y關(guān)于x的函數(shù)表達式;

(2)總利潤的最大值.

查看答案和解析>>

同步練習(xí)冊答案