【題目】關(guān)于函數(shù)有下列命題:

函數(shù)的圖象關(guān)于軸對(duì)稱(chēng);

在區(qū)間上,函數(shù)是減函數(shù);

在區(qū)間上,函數(shù)是增函數(shù);

函數(shù)的值域是 .其中正確命題序號(hào)為____.

【答案】①③④

【解析】函數(shù).

函數(shù)滿(mǎn)足,即為偶函數(shù),所以圖象關(guān)于軸對(duì)稱(chēng),所以①正確;

②當(dāng)x>0時(shí),令

(0,1)上為減函數(shù),在(1,+∞)上是增函數(shù),

在其定義域?yàn)樵龊瘮?shù),故函數(shù)y=f(x)(0,1)上為減函數(shù),在(1,+∞)上是增函數(shù),

結(jié)合①的結(jié)論及偶函數(shù)在對(duì)稱(chēng)區(qū)間上單調(diào)性相反,可得在區(qū)間(∞,1)上,函數(shù)y=f(x)是減函數(shù),在(1,0)上是增函數(shù),故②錯(cuò)誤,③正確;

④由②中函數(shù)的單調(diào)性,可得當(dāng)x=±1時(shí),函數(shù)f(x)取最小值為,故④正確。

故正確命題的序號(hào)為①③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時(shí)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2016年高考四川理數(shù)】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a R.

)討論f(x)的單調(diào)性;

)確定a的所有可能取值,使得在區(qū)間(1,+)內(nèi)恒成立(e=2.718為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個(gè)零點(diǎn),并利用零點(diǎn)存在性定理確定各零點(diǎn)所在的區(qū)間(各區(qū)間長(zhǎng)度不超過(guò)1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了適應(yīng)市場(chǎng)需求對(duì)產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤(rùn)增長(zhǎng)迅速,之后增長(zhǎng)越來(lái)越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來(lái)反映該公司調(diào)整后利潤(rùn)與時(shí)間的關(guān)系,可選用( )

A. 一次函數(shù) B. 二次函數(shù) C. 指數(shù)型函數(shù) D. 對(duì)數(shù)型函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知).

(Ⅰ)求證:;

(Ⅱ)若不等式時(shí)恒成立,求最小正整數(shù),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視劇《人民的名義》中有一個(gè)低矮的接待上訪服務(wù)窗口,假設(shè)群眾辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是10分鐘的整數(shù)倍,對(duì)以往群眾辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:

辦理業(yè)務(wù)所需的時(shí)間(分)

10

20

30

40

50

頻率

0.3

0.3

0.2

0.1

0.1

假設(shè)排隊(duì)等待辦理業(yè)務(wù)的群眾不少于3人,從第一個(gè)群眾開(kāi)始辦理業(yè)務(wù)時(shí)開(kāi)始計(jì)時(shí).

(Ⅰ)估計(jì)第三個(gè)群眾恰好等待40分鐘開(kāi)始辦理業(yè)務(wù)的概率;

(Ⅱ)表示至第20分鐘末已辦理完業(yè)務(wù)的群眾人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在等腰梯形中, 是梯形的高, ,現(xiàn)將梯形沿, 折起,使,得一簡(jiǎn)單組合體如 圖(2)示,已知 分別為 的中點(diǎn).

(1)求證: 平面;

(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=,b=,且x∈.

(1)求a·b及|a+b|;

(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案