已知函數(shù)f(x)=sinωx+cos(ωx+
π
6
),其中x∈R,ω為正常數(shù).
(1)當(dāng)ω=2時(shí),求f(
π
3
)的值;
(2)記f(x)的最小正周期為T,若f(
π
3
)=1,求T的最大值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用兩角和公式對(duì)函數(shù)解析式化簡(jiǎn)整理得到f(x)的解析式,把ω=2,x=
π
3
代入求得答案.
(2)把x=
π
3
代入函數(shù)解析式,然后利用周期公式表示出T,進(jìn)而求得T的最大值.
解答: 解:(1)f(x)=sinωx+cos(ωx+
π
6
)=sinωx+
3
2
cosωx-
1
2
sinωx=
1
2
sinωx+
3
2
cosωx=sin(ωx+
π
3
),
∴當(dāng)ω=2時(shí),f(x)=sin(2x+
π
3
),
∴f(
π
3
)=sin(
3
+
π
3
)=sinπ=0.
(2)f(
π
3
)=sin(ω•
π
3
+
π
3
)=1,
∴ω•
π
3
+
π
3
=2kπ+
π
2
,k∈Z
∴ω=6k+
1
2
,k∈Z
∴T=
ω
=
6k+
1
2
,當(dāng)k=0時(shí),T有最大值為4π.
點(diǎn)評(píng):本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象和性質(zhì).考查了學(xué)生推理和分析問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列對(duì)應(yīng)為從A到B的一一映射的為( 。
A、A={x|x<0且x∈R},B={y|y>0且y∈R},f:x→-x+1
B、A=R,B={y|y∈R且y≠0},f:x→
1
x
C、A={x|x>0且x∈R},B={y|y≥0且y∈R},f:x→
x
D、A=R,B=R,f:x→2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=log23-log2
3
,y=log0.5π,z=0.9-1.1,則(  )
A、x<y<z
B、z<y<x
C、y<z<x
D、y<x<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)質(zhì)量為1kg的物體作直線運(yùn)動(dòng),設(shè)運(yùn)動(dòng)距離s(單位:m)與時(shí)間t(單位:s)的關(guān)系可用函數(shù)s(t)=(2t-1)2表示,并且物體的動(dòng)能Ek=
1
2
mv2,則物體開始運(yùn)動(dòng)后第2s時(shí)的動(dòng)能是( 。
A、18JB、36J
C、72JD、144J

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足Sn=n-an(n∈N*),其中Sn為其前n項(xiàng)和.
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=(2-n)(an-1),且對(duì)任意的正整數(shù)n,都有bn+
1
4
t≤t2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點(diǎn)O為做簡(jiǎn)諧運(yùn)動(dòng)的物體的平衡位置,取向右的方向?yàn)槲矬w位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運(yùn)動(dòng)到A點(diǎn)(距平衡位置最遠(yuǎn)處)開始計(jì)時(shí).
(1)求物體離開平衡位置的位移x(cm)和時(shí)間t(s)之間的函數(shù)關(guān)系式;
(2)求該物體在t=5s時(shí)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種商品進(jìn)價(jià)12元,若定價(jià)20元,賣100件.發(fā)現(xiàn)定價(jià)每多1元,少賣5件,問定價(jià)多少時(shí),利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長(zhǎng)為2,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn).
(1)從C、D、E、F、G、H這六個(gè)點(diǎn)中,隨機(jī)選取兩個(gè)點(diǎn),記這兩個(gè)點(diǎn)之間的距離的平方為ξ,求概率P(ξ≤4).
(2)在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,求滿足|PE|<2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高三年級(jí)期末考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)分成六段:[40,50),[50,60),…,[90,100],它的頻率分布直方圖如圖所示.則該批學(xué)生中成績(jī)不低于60分的人數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案