【題目】已知定義在上的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對任意的,不等式恒成立,求的取值范圍.
【答案】(1) a=b=1;(2) .
【解析】試題分析:
(1)奇函數(shù)滿足f(0)=0,據(jù)此可得b=1,結(jié)合奇函數(shù)滿足f(-x)=-f(x)可得a=1;
(2)利用題意結(jié)合函數(shù)的單調(diào)性和奇偶性得到關(guān)于實數(shù)k的不等式,求解不等式可得的取值范圍是.
試題解析:
(1)∵f(x)是定義在R上的奇函數(shù),
∴, 解得b=1,
∴,
∴a2x+1=a+2x,即a(2x﹣1)=2x﹣1對一切實數(shù)x都成立,
∴a=1, 故a=b=1. (2)∵a=b=1, ∴,
∴f(x)在R上是減函數(shù).
∵不等式f(t﹣2t2)+f(﹣k)>0,
∴f(t﹣2t2)>﹣f(﹣k),
∴f(t﹣2t2)>f(k),
∵f(x)是R上的減函數(shù), ∴t﹣2t2<k
∴對t∈R恒成立,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù),).
(Ⅰ)當(dāng)時,若曲線上存在兩點關(guān)于點成中心對稱,求直線的參數(shù)方程;
(Ⅱ)在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點,若,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對稱軸間的距離為.
(1)當(dāng)時,求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且Sn=2n﹣1.?dāng)?shù)列{bn}滿足b1=2,bn+1﹣2bn=8an .
(1)求數(shù)列{an}的通項公式.
(2)證明:數(shù)列{ }為等差數(shù)列,并求{bn}的通項公式.
(3)求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人,抽到喜歡游泳的學(xué)生的概率為.
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家父母記錄了女兒玥玥的年齡(歲)和身高(單位cm)的數(shù)據(jù)如下:
年齡x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
(1)試求y關(guān)于x的線性回歸方程 = x+
(2)試預(yù)測玥玥10歲時的身高.(其中, = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , , 的中點,點, 分別在棱, 上移動,且.
(1)當(dāng)時,證明:直線平面;
(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山西某公司有一批專業(yè)技術(shù)人員,對他們進(jìn)行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 3550歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | 20 |
(Ⅰ)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為10的樣本,將該樣本看成一個總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個人,其中35歲以下48人,50歲以上10人,再從這個人中隨機抽取出1人,此人的年齡為50歲以上的概率為,求、的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com