【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.

【答案】
(1)解:由題意可得,直線l的斜率存在,

設(shè)過(guò)點(diǎn)A(0,1)的直線方程:y=kx+1,即:kx﹣y+1=0.

由已知可得圓C的圓心C的坐標(biāo)(2,3),半徑R=1.

故由 <1,

故當(dāng) <k< ,過(guò)點(diǎn)A(0,1)的直線與圓C:(x﹣2)2+(y﹣3)2=1相交于M,N兩點(diǎn)


(2)解:設(shè)M(x1,y1);N(x2,y2),

由題意可得,經(jīng)過(guò)點(diǎn)M、N、A的直線方程為y=kx+1,代入圓C的方程(x﹣2)2+(y﹣3)2=1,

可得 (1+k2)x2﹣4(k+1)x+7=0,

∴x1+x2= ,x1x2=

∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1

= k2+k +1= ,

=x1x2+y1y2= =12,解得 k=1,

故直線l的方程為 y=x+1,即 x﹣y+1=0.

圓心C在直線l上,MN長(zhǎng)即為圓的直徑.

所以|MN|=2


【解析】(1)由題意可得,直線l的斜率存在,用點(diǎn)斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿(mǎn)足條件的k的范圍.(2)由題意可得,經(jīng)過(guò)點(diǎn)M、N、A的直線方程為y=kx+1,根據(jù)直線和圓相交的弦長(zhǎng)公式進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線l上.

求圓的方程;

求過(guò)點(diǎn)且與圓相切的直線方程;

設(shè)圓x軸相交于AB兩點(diǎn),點(diǎn)P為圓上不同于AB的任意一點(diǎn),直線PAPBy軸于M、N點(diǎn)當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓是否經(jīng)過(guò)圓內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形所在的平面垂直于平面,,,.

(1)若的中點(diǎn),求證:平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;命題q:關(guān)于x的一元二次方程對(duì)于任意實(shí)數(shù)a都沒(méi)有實(shí)數(shù)根.

若命題p為真命題,求實(shí)數(shù)m的取值范圍;

若命題p和命題q中有且只有一個(gè)為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù), .

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí), 恒成立,求的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為(
A.
B.2π
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求的值;

(2)當(dāng)時(shí),在區(qū)間上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)共派出個(gè)男生和個(gè)女生參加學(xué)校運(yùn)動(dòng)會(huì)的入場(chǎng)儀式,其中男生倪某為領(lǐng)隊(duì).入場(chǎng)時(shí),領(lǐng)隊(duì)男生倪某必須排第一個(gè),然后女生整體在男生的前面,排成一路縱隊(duì)入場(chǎng),共有種排法;入場(chǎng)后,又需從男生(含男生倪某)和女生中各選一名代表到主席臺(tái)服務(wù),共有種選法.(1)試求; (2)判斷的大。),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在(﹣1,+∞)上單調(diào),且函數(shù)y=f(x﹣2)的圖象關(guān)于x=1對(duì)稱(chēng),若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),則{an}的前100項(xiàng)的和為(
A.﹣200
B.﹣100
C.0
D.﹣50

查看答案和解析>>

同步練習(xí)冊(cè)答案